Biopolym. Cell. 2001; 17(5):363-373.
Structure and Function of Biopolymers
1H NMR structural and thermodynamical analysis of complexation of propidium iodide with deoxytetranucleotide 5'-d(TpGpCpA) in aqueous solution
- Sevastopol National Technical University
33, Universytetska Str., Sevastopol, Ukraine, 99053 - Birkbeck, University of London
Malet Str., Bloomsbury, London WC1E 7HX, UK
Abstract
The interaction of phenantridine dye propidium iodide with self-complementary deoxytetraribonucleoside triphosphate 5'-d(TpGp-CpA) in aqueous salt solu.tj.on has been studied by one- and two-dimensional 500 MHz 1H NMR spectroscopy. The concentration and temperature dependences of proton chemical shifts of the interacting molecules have been measured. Different schemes of complexation of propidium with the tetranucleotide have been analysed and the equilibrium constants, free energy AG, enthalpies A//, entropies AS of different reactions leading to the formation of 1:1, 1:2, 2:1, 2:2 complexes have been determined. The specific features of the dynamic equilibrium of different complexes as a function of the drug-tetranucleotide ratio and temperature have been examined. It is concluded that propidium intercalates preferentially to pyrimidine-purine d(T-G)- and d(C-A)-sites of the tetranucleotide sequence. The most favourable structures of 1:2 and 2:2 propidium-tetranucleotide complexes have been constructed using the calculated values of induced chemical shift of dye protons and 2D-NOE spectra. A comparative analysis of the complexation of phenantridine dyes, propidium iodide, ethidium bromide, and acridine dye proflavine with deoxytetranucleotide d(TGCA) under the same experimental conditions, has been made.
Full text: (PDF, in Russian)
References
[1]
Gale EE, Cundliffe E, Reynolds PE, Richmond MN, Waring MJ. The molecular basis of antibiotic action. LonÂdon: John Wiley, 1981. 500 p.
[2]
Neidle S, Pearl LH, Skelly JV. DNA structure and perturbation by drug binding. Biochem J. 1987;243(1):1-13.
[3]
Blackburn GM, Gait JM. Nucleic acids in chemistry and biology. Oxford; New-York; Tokyo: Oxford Univ. press, 1990: 297-336.
[4]
Feigon J, Leupin W, Denny WA, Kearns DR. Binding of ethidium derivatives to natural DNA: a 300 MHz 1H NMR study. Nucleic Acids Res. 1982;10(2):749-62.
[5]
Bailey SA, Graves DE, Rill R, Marsch G. Influence of DNA base sequence on the binding energetics of actinomycin D. Biochemistry. 1993;32(22):5881-7.
[6]
Bailey SA, Graves DE, Rill R. Binding of actinomycin D to the T(G)nT motif of double-stranded DNA: determination of the guanine requirement in nonclassical, non-GpC binding sites. Biochemistry. 1994;33(38):11493-500.
[7]
Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[8]
Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy: Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5'-d(GpCpGpC) and 5'-d(CpGpCpG) in aqueous solution. J Chem Soc Faraday Transactions. 1996; 92 (19):3545-57.
[9]
Hopkins HP Jr, Fumero J, Wilson WD. Temperature dependence of enthalpy changes for ethidium and propidium binding to DNA: effect of alkylamine chains. Biopolymers. 1990;29(2):449-59.
[10]
Marky LA, Macgregor RB Jr. Hydration of dA.dT polymers: role of water in the thermodynamics of ethidium and propidium intercalation. Biochemistry. 1990;29(20):4805-11.
[11]
Veselkov AN, Zavyalova OS, Djimant LN, Davies D. [Analysis of complexation of ethidium bromide with self-complementary deoxyriboanucleotide 5'-d(TGCA) by the 1H-NMR] Zh Fiz Khim. 1996; 70(9):1617-24.
[12]
Eaton RA, Veselkov DA, Djimant LN, Baranovsky SF, Osetrov SG, Davies DB, Veselkov AN. 1H-NMR investigation of coraplexation of acridine dye proflavine with deoxytetraribonucleoside triphosphate 5'-d(TpGpCpA) in aqueous solution. Biopolym Cell. 1998; 14(2):117-26.
[13]
Patel DJ, Canuel LL. Netropsin-poly(dA-dT) complex in solution: structure and dynamics of antibiotic-free base pair regions and those centered on bound netropsin. Proc Natl Acad Sci U S A. 1977;74(12):5207-11.
[14]
Veselkov AN, Djimant LN, Kodinzec VV, Lisutin VA, Parkes H, Davies D. 1H-NMR investigation of deoxytetranucleoside triphosphates D(TpGpCpA) self-association in aqueous solution. Biofizika. 1995; 40(2):283-92.
[15]
Davies DB, Veselkov DA, Veselkov AN. Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy. Mol Phys. 1999;97(3):439–51.
[16]
Veselkov AN, Djimant LN, Karawajew L, Kulikov EL. Investigation of the aggregation of acridine dyes in aqueous solution by proton NMR. Stud Biophys. 1985;106(3):171-80.
[17]
Nelson JW, Tinoco I Jr. Intercalation of ethidium ion into DNA and RNA oligonucleotides. Biopolymers. 1984;23(2):213-33.
[18]
McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974;86(2):469-89.
[19]
Veselkov AN, Zav’yalova OS, Djimant LN, Shipp D, Davies D. Analysis of Complex Formation between Phenanthridinium Dye Ethidium Bromide and Deoxytetranucleotide 5'-d(TpGpCpA) in an Aqueous Solution. Russian Journal of Physical Chemistry. 1997; 71(1):28-33.
[20]
Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096-102.
[21]
Reinert KE. Anthracycline-binding induced DNA stiffening, bending and elongation; stereochemical implications from viscometric investigations. Nucleic Acids Res. 1983;11(10):3411-30.
[22]
Giessner-Prettre C, Pullman B. Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys. 1987;20(3-4):113-72.
[23]
Poltev VI, Teplukhin AV. Conformational implications of some nucleotide sequences. Int J Quant Chem. 1989. 35(1):91-102.
[24]
Dickerson RE. Definitions and nomenclature of nucleic acid structure parameters. J Biomol Struct Dyn. 1989;6(4):627-34.
[25]
Jain SC, Tsai CC, Sobell HM. Visualization of drug-nucleic acid interactions at atomic resolution. II. Structure of an ethidium/dinucleoside monophosphate crystalline complex, ethidium:5-iodocytidylyl (3'-5') guanosine. J Mol Biol. 1977;114(3):317-31.
[26]
Lybrand T, Kollman P. Molecular mechanical calculations on the interaction of ethidium cation with double-helical DNA. Biopolymers. 1985;24(10):1863-79.
[27]
Chen K-X, Gresh N, Pullman B. A theoretical exploration of conformational aspects of ethidium bromide intercalation into a d(CpG)2 minihelix. Biopolymers. 1987;26(6):831–48.
[28]
Searle MS. NMR Studies of Drug—DNA interactions. Prog Nucl Magn Reson Spectrosc. 1993;25(5):403–80.