Biopolym. Cell. 2001; 17(1):70-77.
Structure and Function of Biopolymers
Conception of multibiosensor for determination of different toxic substances based on the enzyme inhibitor analysis
1Arkhipova V. N., 1Dzyadevich S. V., 1Schuvailo O. N., 1Soldatkin A. P., 1El'skaya A. V., 2Jaffrezic-Renault N., 2Jaffrezic H., 2Martelet C.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Ecole Centrale
    Lyon, BP 163, 69131 Ecully Cedex, France

Abstract

A conception of an enzyme multisensor for the determination of toxic substances based on the enzyme inhibitor analysis has been proposed and a principal possibility of its creation has been shown. For the development of such system two types of transducers, such as potentiometric pff-sensitive field-effect transistors and conductometric thin-films interdigitated electrodes, and three enzymes, namely urease, acetylcholinesterase and butyrulcholinesterase have been used. The experimental data have been treated by the multivariate data processing based on the discriminant function analysis and artificial neural net. The full procedure of the toxic components determination has been proposed and its advantages have been discussed.

References

[1] Verscheuren K Handbook of environmental data on organic chemicals, 2nd ed. New York: Van Norstrand Reinhold, 1983. 673 p.
[2] Verordnung uber Trinkwasser und uber Wasser fur Lebensmittelbetriebe (Trinkwasserverordnung-TrinkwV). Bundesgesetzblatt, Jahrganag. 1986. Teil 1:760.
[3] Sherma J, Zweig G. Pesticides. Anal Chem. 1983;55(5):57R-70R.
[4] Durand P, Nicaud JM, Mallevialle J. Detection of organophosphorous pesticides with an immobilized cholinesterase electrode. J Anal Toxicol. 1984;8(3):112-7.
[5] Tran-Minh C, Pandey PC, Kumaran S. Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase. Biosens Bioelectron. 1990;5(6):461-71.
[6] Soldatkin AP, Volotovsky V, El’skaya AV, Jaffrezic-Renault N, Martelet C. Improvement of urease based biosensor characteristics using additional layers of charged polymers. Analytica Chimica Acta. 2000;403(1-2):25-9.
[7] Zhylyak GA, Dzyadevich SV, Korpan YI, Soldatkin AP, El’skaya AV. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B. 1995;24(1-3):145–8.
[8] Miyahara Y, Moriizumi T, Ichimura K. Integrated enzyme fets for simultaneous detections of urea and glucose. Sensors and Actuators. 1985;7(1):1–10.
[9] Hanazato Y, Nakako M, Shiono S. Multi-enzyme electrode using hydrogen-ion-sensitive field-effect transistors. IEEE Transactions on Electron Devices. 1986;33(1):47–51.
[10] Cullen DC, Sethi RS, Lowe CR. Multi-analyte miniature conductance biosensor. Analytica Chimica Acta. 1990;231:33–40.
[11] Winquist F, Holmin S, Krantz-R?lcker C, Wide P, Lundstr?m I. A hybrid electronic tongue. Anal Chim Acta. 2000;406(2):147–57.
[12] Dzyadevich SV, Soldatkin AP. Conductometric method of measurements in enzyme analysis. Ukr Biokhim Zh. 1994; 66(4):30-42.
[13] Shul’ga AA, Strikha VI. The current state of development of biosensors based on semiconductor structures. Bioengineering - a new direction of computerization. M.: Nauka, 1990:63-82.
[14] Dzydevich SV, Shu?ga AA, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C. Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanalysis. 1994;6(9):752–8.
[15] Shul’ga AA, Netchiporouk LI, Sandrovsky AK, Abalov AA, Frolov OS, Kononenko YG, et al. Operation of an ISFET with non-insulated substrate directly exposed to the solution. Sensors and Actuators B. 1996;30(2):101–5.
[16] Patskovsky SV, Volotovsky VV. A device with thin-film planar electrodes for conductometric measurements. Pribory i tekhnika experimenta. 1996;(4):168.
[17] Patskovsky SV, Volotovsky VV. A device for measuring the gate potential of ion sensitive field effect transistor. Pribory i tekhnika experimenta. 1996; (3):168.
[18] Shulga AA, Dzyadevich SV, Soldatkin AP, Patskovsky SV, Strikha VI. Conductometric biosensors for glucose and urea based on microfabricated thin-film interdigitated arrayelectrodes. Biol Ital. 1993; 23(6):40-5.
[19] Gardner JW, Hines EL. Pattern analysis techniques. Handbook of biosensors and electronic noses. Boca Raton: CRC press, 1997: 633-52.
[20] S?nchez MS, Sarabia LA. Efficiency of multi-layered feed-forward neural networks on classification in relation to linear discriminant analysis, quadratic discriminant analysis and regularized discriminant analysis. Chemometrics and Intelligent Laboratory Systems.1995;28(2):287–303.