Biopolym. Cell. 2000; 16(6):515-524.
Structure and Function of Biopolymers
Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase
1Golub A. G., 1Odynets K. A., 2Nyporko A. Yu., 1Konelyuk A. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Cell Biology and Genetic Engineering, NAS of Ukraine
    148, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680

Abstract

COOH-terminal module (C-module) of cytoplasmic tyrosyl-tRNA synthetases from chordate and insects is homologous to the mammalian cytokine EMAP II (52.7 % identity) and in free form has similar biological properties in experiments in vitro. The main part of C-module is a domain with «OB-fold» type of structure (B-domain, residues Val363-Lys470), containing five β-strands, which are characteristic for this fold type. Like some other «OB-fold»-containing domains C-module has affinity to nucleic acids. By using comparative homology modeling methods the C-module structure model of bovine (Bos taurus) tyrosyl-tRNA synthetase is created. The comparison of C-module model with anticodon-binding domains of aspartyl- and lysyl-tRNA synthetases allows to predict the interacting surface with RNA and some functionally important amino acid residues. The C-module structure model will help to study further the tyrosyl-tRNA synthetase structure and functions, its interaction with tRNATyr, and cytokine-like properties of the free C-module.

References

[1] Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998;14(4):349-59.
[2] Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver. Ukr Biokhim Zh. 1991;63(4):61-7.
[3] Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8.
[4] Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[5] Bedouelle H. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase. Biochimie. 1990;72(8):589-98.
[6] Odynets KA, Golub AG, Kornelyuk AI. 3D structure modeling of COOH-terminal cytokine-like module of mammalian tyrosyl-tRNA synthetase. Proc Conf on genetics and molec biol on 100 aniversary of genetics. Lviv. 2000; 1: 138.
[7] Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239-47.
[8] Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
[9] Tas MP, Murray JC. Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol. 1996;28(8):837-41.
[10] Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272(51):32573-9.
[11] Park SG, Jung KH, Lee JS, Jo YJ, Motegi H, Kim S, Shiba K. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. J Biol Chem. 1999;274(24):16673-6.
[12] Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[13] Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[14] Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999;274(33):23155-9.
[15] Simos G, Sauer A, Fasiolo F, Hurt EC. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell. 1998;1(2):235-42.
[16] Deniziak M, Mirande M, Barciszewski J. Cloning and sequencing of cDNA encoding the rice methionyl-tRNA synthetase. Acta Biochim Pol. 1998;45(3):669-76.
[17] Tan M, Heckmann K, Br?nen-Nieweler C. The micronuclear gene encoding a putative aminoacyl-tRNA synthetase cofactor of the ciliate Euplotes octocarinatus is interrupted by two sequences that are removed during macronuclear development. Gene. 1999;233(1-2):131-40.
[18] Pahler S, Krasko A, Sch?tze J, M?ller IM, M?ller WE. Isolation and characterization of a cDNA encoding a potential morphogen from the marine sponge Geodia cydonium that is conserved in higher metazoans. Proc Biol Sci. 1998;265(1394):421-5.
[19] Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[20] M?ller JP, Bron S, Venema G, van Dijl JM. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Microbiology. 2000;146 ( Pt 1):77-88.
[21] Morales AJ, Swairjo MA, Schimmel P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. EMBO J. 1999;18(12):3475-83.
[22] Kurochkin IV, Korneliuk AI, Matsuka GKh. Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA. Mol Biol (Mosk). 1991;25(3):779-86.
[23] Kalachniuk LH, Korneliuk OI, Matsuka HKh. Tyrosine tRNA(Q*psiA) from bovine liver. Identification of its sites of interaction with homologous aminoacyl-trna synthetase using chemical modification. Ukr Biokhim Zh. 1995;67(5):60-5.
[24] Zhang J, Madden TL. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 1997;7(6):649-56.
[25] Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80.
[26] Rost B, Sander C, Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994;10(1):53-60.
[27] Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247(4):536-40.
[28] Orengo CA, Martin AM, Hutchinson G, Jones S, Jones DT, Michie AD, Swindells MB, Thornton JM. Classifying a protein in the CATH database of domain structures. Acta Crystallogr D Biol Crystallogr. 1998;54(Pt 6 Pt 1):1155-67.
[29] Elofsson A, Fischer D, Rice DW, Le Grand SM, Eisenberg D. A study of combined structure/sequence profiles. Fold Des. 1996;1(6):451-61.
[30] Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000;299(2):499-520.
[31] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.
[32] Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-3.
[33] HyperChem release 5.0. Reference manual. Ottawa: Hypercube Inc., 1996. 656 p.
[34] Koradi R, Billeter M, W?thrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14(1):51-5.
[35] Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23.
[36] Sayle RA, Milner-White EJ. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995;20(9):374.
[37] Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-637.
[38] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234(4774):364-8.
[39] Mosyak L, Reshetnikova L, Goldgur Y, Delarue M, Safro MG. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol. 1995;2(7):537-47.
[40] Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993;12(3):861-7.
[41] Kawaguchi S, Sekine S, Vassylyev DG, Yokoyama S. Crystal structure of T. thermophilus homolog of Trbplll: A novel tRNA binding protein. Abstracts of 18th tRNA Workshop «tRNA 2000» (April 8-12, 2000, Cambridge). Cambridge: UK., 2000: 5-77.
[42] Boulikas T. Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr. 1993;3(3):193-227.
[43] Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997;278(5339):849-53.
[44] Hubbard T, Lesk AM. Modeling protein structures. Computer modeling in molecular biology. Ed. J. Goodfellow. Weinheim: VCH, 1995: 10-33.
[45] Sanchez R, Badretdinov AY, Feyfant E, Sali A. Homology protein structure modeling. Cur Opin Biotechnol. 1998; 9(4):383-9.
[46] Claessens M, Van Cutsem E, Lasters I, Wodak S. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 1989;2(5):335-45.
[47] Schmitt E, Moulinier L, Fujiwara S, Imanaka T, Thierry JC, Moras D. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 1998;17(17):5227-37.
[48] Onesti S, Miller AD, Brick P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure. 1995;3(2):163-76.
[49] Kim Y, Shin J, Li R, Cheong C, Kim K, Kim S. A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem. 2000;275(35):27062-8.