Biopolym. Cell. 2000; 16(6):515-524.
Structure and Function of Biopolymers
Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Institute of Cell Biology and Genetic Engineering, NAS of Ukraine
148, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680
Abstract
COOH-terminal module (C-module) of cytoplasmic tyrosyl-tRNA synthetases from chordate and insects is homologous to the mammalian cytokine EMAP II (52.7 % identity) and in free form has similar biological properties in experiments in vitro. The main part of C-module is a domain with «OB-fold» type of structure (B-domain, residues Val363-Lys470), containing five β-strands, which are characteristic for this fold type. Like some other «OB-fold»-containing domains C-module has affinity to nucleic acids. By using comparative homology modeling methods the C-module structure model of bovine (Bos taurus) tyrosyl-tRNA synthetase is created. The comparison of C-module model with anticodon-binding domains of aspartyl- and lysyl-tRNA synthetases allows to predict the interacting surface with RNA and some functionally important amino acid residues. The C-module structure model will help to study further the tyrosyl-tRNA synthetase structure and functions, its interaction with tRNATyr, and cytokine-like properties of the free C-module.
Full text: (PDF, in Russian)
References
[1]
Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998;14(4):349-59.
[2]
Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver. Ukr Biokhim Zh. 1991;63(4):61-7.
[3]
Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8.
[4]
Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[6]
Odynets KA, Golub AG, Kornelyuk AI. 3D structure modeling of COOH-terminal cytokine-like module of mammalian tyrosyl-tRNA synthetase. Proc Conf on genetics and molec biol on 100 aniversary of genetics. Lviv. 2000; 1: 138.
[7]
Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239-47.
[8]
Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
[9]
Tas MP, Murray JC. Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol. 1996;28(8):837-41.
[10]
Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272(51):32573-9.
[11]
Park SG, Jung KH, Lee JS, Jo YJ, Motegi H, Kim S, Shiba K. Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase. J Biol Chem. 1999;274(24):16673-6.
[12]
Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[13]
Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[14]
Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999;274(33):23155-9.
[15]
Simos G, Sauer A, Fasiolo F, Hurt EC. A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell. 1998;1(2):235-42.
[16]
Deniziak M, Mirande M, Barciszewski J. Cloning and sequencing of cDNA encoding the rice methionyl-tRNA synthetase. Acta Biochim Pol. 1998;45(3):669-76.
[17]
Tan M, Heckmann K, Br?nen-Nieweler C. The micronuclear gene encoding a putative aminoacyl-tRNA synthetase cofactor of the ciliate Euplotes octocarinatus is interrupted by two sequences that are removed during macronuclear development. Gene. 1999;233(1-2):131-40.
[18]
Pahler S, Krasko A, Sch?tze J, M?ller IM, M?ller WE. Isolation and characterization of a cDNA encoding a potential morphogen from the marine sponge Geodia cydonium that is conserved in higher metazoans. Proc Biol Sci. 1998;265(1394):421-5.
[19]
Simos G, Segref A, Fasiolo F, Hellmuth K, Shevchenko A, Mann M, Hurt EC. The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 1996;15(19):5437-48.
[20]
M?ller JP, Bron S, Venema G, van Dijl JM. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Microbiology. 2000;146 ( Pt 1):77-88.
[21]
Morales AJ, Swairjo MA, Schimmel P. Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus. EMBO J. 1999;18(12):3475-83.
[22]
Kurochkin IV, Korneliuk AI, Matsuka GKh. Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA. Mol Biol (Mosk). 1991;25(3):779-86.
[23]
Kalachniuk LH, Korneliuk OI, Matsuka HKh. Tyrosine tRNA(Q*psiA) from bovine liver. Identification of its sites of interaction with homologous aminoacyl-trna synthetase using chemical modification. Ukr Biokhim Zh. 1995;67(5):60-5.
[24]
Zhang J, Madden TL. PowerBLAST: a new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 1997;7(6):649-56.
[25]
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673-80.
[26]
Rost B, Sander C, Schneider R. PHD--an automatic mail server for protein secondary structure prediction. Comput Appl Biosci. 1994;10(1):53-60.
[27]
Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995;247(4):536-40.
[28]
Orengo CA, Martin AM, Hutchinson G, Jones S, Jones DT, Michie AD, Swindells MB, Thornton JM. Classifying a protein in the CATH database of domain structures. Acta Crystallogr D Biol Crystallogr. 1998;54(Pt 6 Pt 1):1155-67.
[29]
Elofsson A, Fischer D, Rice DW, Le Grand SM, Eisenberg D. A study of combined structure/sequence profiles. Fold Des. 1996;1(6):451-61.
[30]
Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000;299(2):499-520.
[31]
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-42.
[32]
Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-3.
[33]
HyperChem release 5.0. Reference manual. Ottawa: Hypercube Inc., 1996. 656 p.
[34]
Koradi R, Billeter M, W?thrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996;14(1):51-5.
[35]
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714-23.
[36]
Sayle RA, Milner-White EJ. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995;20(9):374.
[37]
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22(12):2577-637.
[38]
Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234(4774):364-8.
[39]
Mosyak L, Reshetnikova L, Goldgur Y, Delarue M, Safro MG. Structure of phenylalanyl-tRNA synthetase from Thermus thermophilus. Nat Struct Biol. 1995;2(7):537-47.
[40]
Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 1993;12(3):861-7.
[41]
Kawaguchi S, Sekine S, Vassylyev DG, Yokoyama S. Crystal structure of T. thermophilus homolog of Trbplll: A novel tRNA binding protein. Abstracts of 18th tRNA Workshop «tRNA 2000» (April 8-12, 2000, Cambridge). Cambridge: UK., 2000: 5-77.
[42]
Boulikas T. Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr. 1993;3(3):193-227.
[43]
Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997;278(5339):849-53.
[44]
Hubbard T, Lesk AM. Modeling protein structures. Computer modeling in molecular biology. Ed. J. Goodfellow. Weinheim: VCH, 1995: 10-33.
[45]
Sanchez R, Badretdinov AY, Feyfant E, Sali A. Homology protein structure modeling. Cur Opin Biotechnol. 1998; 9(4):383-9.
[46]
Claessens M, Van Cutsem E, Lasters I, Wodak S. Modelling the polypeptide backbone with 'spare parts' from known protein structures. Protein Eng. 1989;2(5):335-45.
[47]
Schmitt E, Moulinier L, Fujiwara S, Imanaka T, Thierry JC, Moras D. Crystal structure of aspartyl-tRNA synthetase from Pyrococcus kodakaraensis KOD: archaeon specificity and catalytic mechanism of adenylate formation. EMBO J. 1998;17(17):5227-37.
[48]
Onesti S, Miller AD, Brick P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure. 1995;3(2):163-76.
[49]
Kim Y, Shin J, Li R, Cheong C, Kim K, Kim S. A novel anti-tumor cytokine contains an RNA binding motif present in aminoacyl-tRNA synthetases. J Biol Chem. 2000;275(35):27062-8.