Biopolym. Cell. 2000; 16(6):468-481.
Structure and Function of Biopolymers
Molecular basis of the protective action of caffeine on the complexation of intercalating ligands with DNA
- Sevastopol National Technical University
33, Universytetska Str., Sevastopol, Ukraine, 99053 - Birkbeck, University of London
Malet Str., Bloomsbury, London WC1E 7HX, UK
Abstract
Molecular mechanism of caffeine (CF) action as a complex-forming agent – interceptor of aromatic ligands intercalating into DNA has been examined using as an example a typical intercalator, the phenanthridinium dye, ethidium bromide (EB). Self-association and hetero-association of CF and EB as well as their complexation with deoxytetranucleotide 5'-d(TpGpCpA) under the same experimental conditions have been studied using one- and two-dimensional 1H-NMR spectroscopy (500 MHz). The concentration dependencies (at 298 K and 308 K) and temperature dependencies of the proton chemical shifts of the molecules in aqueous solution have been measured. Equilibrium constants of self-association and hetero-association of CF and EB as well as equilibrium constants of formation of different complexes between CF, EB and monomer and duplex forms of deoxytetranucleotide d(TGCA) haw been determined. The limiting proton chemical shifts of the aromatic ligands in different associates and complexes have been calculated. The most favourable structures of caffeine dimer and 1:1 CF + EB hetero-complex in aqueous solution have been constructed. The relative content of different types of associates and complexes in the mixed solution containing CF, EB and d(TGCA) has been calculated. Specific features of the dynamic equilibrium between the hetero-associates of CF and EB and their hetero-complexes with d(TGCA), i. e. CF-EB-d(TGCA), have been revealed as a function of concentration of caffeine in the mixed solution. It has been concluded that the decrease in the efficacy of the action of the ligand intercalating into DNA upon the CF addition in the solution is mostly due to the competition for the binding sites of oligonucleotide sequence by caffeine molecules and less – to the formation of CF-EB hetero-association complexes in the mixed solution.
Full text: (PDF, in Russian)
References
[1]
O'Neill FJ. Differential effects of cytochalasin B and caffeine on control of DNA synthesis in normal and transformed cells. J Cell Physiol. 1979;101(2):201-17. v
[2]
Selby CP, Sancar A. Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci U S A. 1990;87(9):3522-5.
[3]
Kunicka JE, Myc A, Melamed MR, Darzynkiewicz Z. Caffeine increases sensitivity of DNA to denaturation in chromatin of L1210 cells. Cell Tissue Kinet. 1990;23(1):31-9.
[4]
Fritzsche H, Petri I, Sch?tz H, Weller K, Sedmera P, Lang H. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Biophys Chem. 1980;11(1):109-19.
[5]
Kimura H, Aoyama T. Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability. J Pharmacobiodyn. 1989;12(10):589-95.
[6]
Ross WE, Zwelling LA, Kohn KW. Relationship between cytotoxicity and DNA strand breakage produced by adriamycin and other intercalating agents. Int J Radiat Oncol Biol Phys. 1979;5(8):1221-4.
[7]
Ganapathi R, Grabowski D, Schmidt H, Yen A, Iliakis G. Modulation of adriamycin and N-trifluoroacetyladriamycin-14-valerate induced effects on cell cycle traverse and cytotoxicity in P388 mouse leukemia cells by caffeine and the calmodulin inhibitor trifluoperazine. Cancer Res. 1986;46(11):5553-7.
[8]
Iliakis G, Nusse M, Ganapathi R, Egner J, Yen A. Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in Chinese hamster V79 cells. Int J Radiat Oncol Biol Phys. 1986;12(11):1987-95.
[9]
Traganos F, Kapuscinski J, Darzynkiewicz Z. Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res. 1991;51(14):3682-9.
[10]
Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys J. 1996;70(1):443-52.
[11]
Kapuscinski J, Kimmel M. Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution. Biophys Chem. 1993;46(2):153-63.
[12]
Weller K, Sch?tz H, Petri I. Thermodynamical model of indefinite mixed association of two components and NMR data analysis for caffeine-AMP interaction. Biophys Chem. 1984;19(4):289-98.
[13]
Baxter NJ, Williamson MP, Lilley TH, Haslam E. Stacking interactions between caffeine and methyl gallate. Faraday Trans. 1996;92(2):231-4.
[14]
Aradi F, F?ldesi A. Equilibrium constants for association of caffeine and theophylline with aromatic salts in aqueous solutions studied by 1H NMR chemical shift measurements. Magn Reson Chem. 1985;23(5):375–8.
[15]
Aradi F, F?ldesi A. Hetero-association of caffeine and theophylline with purine and pyrimidine in aqueous solutions studied by1H NMR chemical shift measurements. Magn Reson Chem. 1989;27(3):249–52.
[16]
Chen J-S, Shiao J-C. Graphic method for the determination of the complex NMR shift and equilibrium constant for a hetero-association accompanying a self-association. Faraday Trans. 1994;90(3):429-33.
[17]
Davies DB, Veselkov DA, Veselkov AN. Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy. Mol Phys. 1999;97(3):439–51.
[18]
Davies DB, Djimant LN, Veselkov AN. 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. Faraday Trans. 1996;92(3):383-90.
[19]
Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5'-d(GpCpGpC) and 5'-d(CpGpCpG) in aqueous solution. Faraday Trans. 1996;92(19):3545-57.
[20]
Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[21]
Lilley TH, Linsdell H, Maestre A. Association of caffeine in water and in aqueous solutions of sucrose. Faraday Trans. 1992;88(19):2865-70.
[22]
Bresloff JL, Crothers DM. Equilibrium studies of ethidium--polynucleotide interactions. Biochemistry. 1981;20(12):3547-53.
[23]
Veselkov AN, Djumant LN, Bolotin PA, Baranovsky SF, Parkes HG, Davies DB. Investigation of interaction of ethidium bromide with tetradeoxyribonucleotide 5'-d(GpCpGpC) by 1H NMR spectroscopy. Mol Biol (Mosk). 1995; 29(2):326-38
[24]
Kan LS, Borer PN, Cheng DM, Ts'o PO. 1H- and 13C-NMR studies on caffeine and its interaction with nucleic acids. Biopolymers. 1980;19(9):1641-54.
[25]
Horman I, Dreux B. estimation of dimerisation constants from complexatin-induced displacements of 1H-NMR chemical shifts: dimerisation of caffeine. Helv Chim Acta. 1984;67(3):754–64.
[26]
Sitkowski J, Stefaniak L, Nicol L, Martin M, Martin G, Webb G. Complete assignments of the 1H, 13C and 15N NMR spectra of caffeine. Spectrochimica Acta Part A. 1995;51(5):839–41.
[27]
Veselkov AN, Dymant LN, Baranovsky SF, Bolotin PA, Parkes HE, Davies D. Investigation of ethidium bromide self-association in aqueous solution by H-NMR spectroscopy. Khim Fizika. 1994; 13: 70-8.
[28]
Veselkov AN, Djimant LN, Karawajew L, Kulikov EL. Investigation of the aggregation of acridine dyes in aqueous solution by proton NMR. Stud Biophys. 1985;106(3):171-80.
[29]
Zahalka J, Donbrow M, Yanuka Y. Study of self-association of 7-alkylxanthines by nuclear magnetic resonance spectrosÂcopy. J Chem Res. 1993; 72: 2429-2447.
[30]
Falk M, Gil M, Iza N. Self-association of caffeine in aqueous solution: an FT-IR study. Can J Chem. 1990;68(8):1293–9.
[31]
Veselkov AN, Djimant LN. Consideration of cooperative self-assembly model acridine dyes. Khim Fizika. 1988; 7: 711-3.
[32]
Giessner-Prettre C, Pullman B. Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys. 1987;20(3-4):113-72.
[33]
Shestopalova AV, Danilov VI, Maleev VYa. Nature stackformation of caffeine molecules n water: Monte Carlo simulation. Dokl Akad Nauk SSSR. 1985; 282(4):1000-2.
[34]
Danilov VI, Shestopalova AV. Hydrophobic effect in biological associates: A Monte Carlo simulation of caffeine molecules stacking. Int J Quantum Chem. 1989;35(1):103–12.
[35]
Falk M, Chew W, Walter JA, Kwiatkowski W, Barclay KD, Klassen GA. Molecular modelling and NMR studies of the caffeine dimer. Can J Chem. 1998;76(1):48–56.
[36]
Veselkov AN, Djimant LN, Kodinzec VV, Lisutin VA, Parkes H, Davies D. 1H-NMR investigation of deoxytetranucleoside triphosphates D(TpGpCpA) self-association in aqueous solution. Biofizika. 1995; 40(2):283-92.
[37]
McGhee JD, von Hippel PH. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974;86(2):469-89.