Biopolym. Cell. 2000; 16(3):229-235.
Structure and Function of Biopolymers
Bacterial expression of full-length and truncated forms of cytokine EMAP-2 and cytokine-like domain of mammalian tyrosyl-tRNA synthetase
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - The University of Nottingham
University ParkNottingham, NG7 2RD, UK
Abstract
DNA fragments encoded full-length cytokine EMAP-2 and cytokine-like domain of mammalian TyrRS and truncated from COOH- and NH2-termini forms were cloned in vector for bacterial expression pET32a. For all clones bacterial overexpression were obtained and full-length forms were purified to homogeneity state by affin chromatography and affinity tag was remove by protease cleavage. Induction of tissue factor for full-length forms was tested. Full-length form of cytokine-like domain of mammalian TyrRS did not interact with polyclonal antibody against EMAP-2 in western-blot analysis. It was concluded that this set of recombinant proteins may be usefull for functional study of these cytokine proteins.
Full text: (PDF, in Russian)
References
[1]
Levanets OV, Naidenov VG, Woodmaska MI, Matsuka GH, Kornelyuk AI. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym Cell. 1997; 13(2):121-6
[2]
Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[3]
Kleeman TA, Wei D, Simpson KL, First EA. Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. J Biol Chem. 1997;272(22):14420-5.
[4]
Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[5]
Wakasugi K, Schimmel P. Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science. 1999;284(5411):147-51.
[6]
Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239-47.
[7]
Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
[8]
Schwarz M, Lee M, Zhang F, Zhao J, Jin Y, Smith S, Bhuva J, Stern D, Warburton D, Starnes V. EMAP II: a modulator of neovascularization in the developing lung. Am J Physiol. 1999;276(2 Pt 1):L365-75.
[9]
Schwarz MA, Kandel J, Brett J, Li J, Hayward J, Schwarz RE, Chappey O, Wautier JL, Chabot J, Lo Gerfo P, Stern D. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med. 1999;190(3):341-54.
[10]
Kao J, Fan YG, Haehnel I, Brett J, Greenberg S, Clauss M, Kayton M, Houck K, Kisiel W, Seljelid R, et al. A peptide derived from the amino terminus of endothelial-monocyte-activating polypeptide II modulates mononuclear and polymorphonuclear leukocyte functions, defines an apparently novel cellular interaction site, and induces an acute inflammatory response. J Biol Chem. 1994;269(13):9774-82.
[11]
Dubrovsky AL, Savinskaya LA, Kornelyuk AI. Cloning and bacterial expression of the cytokine-like noncatalytic domain of bovine tyrosyl-tRNA synthetase. Biopolym. Cell. 1998;14(5):449-452
[12]
Tas MP, Houghton J, Jakobsen AM, Tolmachova T, Carmichael J, Murray JC. Cloning and expression of human endothelial-monocyte-activating polypeptide 2 (EMAP-2) and identification of its putative precursor. Cytokine. 1997;9(8):535-9.