Biopolym. Cell. 2000; 16(1):46-52.
Structure and Function of Biopolymers
Identification of an autonomously replicating sequence of the flavinogenic yeast Pichia guilliermondii
- Division of Cell Regulatory Systems of O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
14/16, Drahomanov Str., Lviv, Ukraine, 79005
Abstract
An autonomously replicating sequence adjacent to the RfBl gene encoding GTP cyclohydrolase II of the yeast Pichia guilliermondii was identified by transformation experiments. Detailed sequence analysis unveiled two potential ARS elements located 5' and 3' of the RIBI open reading frame. The chromosomal fragment containing the ARS-like sequence 3' to the RIBI structural gene, called PgARS, conferred autonomous replication to hybrid plasmids and high transformation frequencies (104 –105 transformants/ug DNA) in Pichia guilliermondii. Based on the PgARS element a series of E. coli–P. guilliermondii shuttle vectors was developed.
Full text: (PDF, in Ukrainian)
References
[1]
Sibirny A. A. Pichia guilliermondii In: Nonconventional yeast in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996: 255-275.
[2]
Cregg JM., Madden KR. Development of yeast transformaÂtion systems and construction of methanol-utilization-defective mutants of Pichia pastoris by gene disruption. Biological research on industrial yeasts. Eds G. G. Stewart, I. Russel, R. D. Klein. R. R. Hiedsch. Boca Raton: CRC press, 1987: 1-18.
[3]
Wesolowski-Louvel M, Breunig KD, Fukuhara H. Kluyveromyces lactis In: Nonconventional yeast in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996: 139-201.
[4]
Das S, Kellermann E, Hollenberg CP. Transformation of Kluyveromyces fragilis. J Bacteriol. 1984;158(3):1165-7.
[5]
Cregg JM, Barringer KJ, Hessler AY, Madden KR. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985;5(12):3376-85.
[6]
Sreekrishna K, Kropp RE. Pichia pastoris II Nonconventional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996: 203-253.
[7]
Hansen H, Hollenberg CP. Hansenula polymorpha (Pichia angusta) In: Nonconventional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996: 293-311.
[8]
Mauersberger S, Ohkuma M, Schunck WH, Takagi M. Candida maltosa In: Nonconventional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996: 411-580.
[9]
Kurtz MB, Cortelyou MW, Miller SM, Lai M, Kirsch DR. Development of autonomously replicating plasmids for Candida albicans. Mol Cell Biol. 1987;7(1):209-17.
[10]
Piredda S, Gaillardin C. Development of a transformation system for the yeast Yamadazyma (Pichia) ohmeri. Yeast. 1994;10(12):1601-12.
[11]
Raymond CK, Bukowski T, Holderman SD, Ching AF, Vanaja E, Stamm MR. Development of the methylotrophic yeast Pichia methanolica for the expression of the 65 kilodalton isoform of human glutamate decarboxylase. Yeast. 1998;14(1):11-23.
[12]
Kunze G, Petzoldt C, Bode R, Samsonova I, Hecker M, Birnbaum D. Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet. 1985;9(3):205-9.
[13]
Zakal'ski? AE, Zlochevski? ML, Stasiv IuZ, Logvinenko EM, Beburov MIu, Shavlovski? GM. Cloning of the RIB1 gene coding for the enzyme of the first stage of flavinogenesis in the yeast Pichia guilliermondi, GTP cyclohydrolase, in Escherichia coli cells. Genetika. 1990;26(4):614-20.
[14]
Logvinenko EM, Stasiv IuZ, Zlochevski? ML, Voronovski? AIa, Beburov MIu, Shavlovski? GM. Cloning of the RIB7 gene encoding the riboflavin synthase of the yeast Pichia guilliermondii. Genetika. 1993;29(6):922-7.
[15]
Liauta-Teglivets O, Hasslacher M, Boretskii IuR, Kohlwein SD, Shavlovskii GM. Molecular cloning of the GTP-cyclohydrolase structural gene RIB1 of Pichia guilliermondii involved in riboflavin biosynthesis. Yeast. 1995;11(10):945-52.
[16]
Shavlovski? GM, Sibirny? AA, Kshanovskaia BV, Koltun LV, Logvinenko EM. Genetic classification of riboflavin-dependent mutants of Pichia guilliermondii yeasts. Genetika. 1979;15(9):1561-8.
[17]
Tesliar GE, Shavlovski? GM. Localization of the genes coding for GTP cyclohydrolase II and riboflavin synthase on the chromosome of Escherichia coli K-12. Tsitol Genet. 1983;17(5):54-6.
[18]
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current Protocols in Molecular Biology. New York: Greene Publ. Assoc. at Wiley-Interscience, 1990. Vol. 1, 2.
[19]
Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab, 1982; 545 p.
[20]
Gleeson MA, Ortori GS, Sudbery PE. Transformation of the Methylotrophic Yeast Hansenula polymorpha. Microbiology. 1986;132(12):3459–65.
[21]
Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103-19.
[22]
Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267-72.
[24]
Rowley A, Dowell SJ, Diffley JF. Recent developments in the initiation of chromosomal DNA replication: a complex picture emerges. Biochim Biophys Acta. 1994;1217(3):239-56.
[25]
Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979;76(3):1035-9.
[26]
Beach D, Nurse P. High-frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature. 1981;290(5802):140-2.