Biopolym. Cell. 1999; 15(5):422-431.
Structure and Function of Biopolymers
Influence of methylalion and interactions with amino acid carboxylic group on UV spectra of purine nucleotide bases and nucleosides in dimethylsulfoxide. 1. Adenine
1Stepanyugin A. V., 1Kolomiets I. M., 1Samijlenko S. P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

UV absorption spectra of adenine, adenosine and a number of their methyl derivatives were studied in DMSO. Essential changes in adenine UV spectra tinder methylation at positions 1 and 3, as well as in adenosine at position 1, reflect significant rebuilding of adenine purine ring. Ade and m6Ade were shown to form complexes with deprotonated amino acid carboxylic group (carboxylate-ion) through two H-bonds involving amino group and the N7H imino group, the N9H → N7H tautomeric transition is therewith initiated just by interaction with carboxylate-ion. Substantial changes in m1Ade, m1A and m3Ade UV spectra under interactions with neutral amino acid carboxylic group are interpreted as a result of proton transfer from amino acid to bases.

References

[1] Schwartz AW, Bakker CG. Was adenine the first purine? Science. 1989;245:1102-4.
[2] Hovorun DM. On the microstructural origin of the linear DNA curvature. Dopovidi Nats Akad Nauk Ukrainy. 1998; (5):189-95.
[3] Hovorun DM. A structural-dynamic model on spontaneous semiopen states in DNA. Biopolym Cell. 1997; 13(1):39-45
[4] Zarudna MI, Hovorun DM. Structural transitions in poliadeniloviy acid: possible molecular mechanisms of the functioning of mRNA poly (A) tails. Dopovidi Nats Akad Nauk Ukrainy. 1998;(12):155-60.
[5] Danilov VI, Pechenaya VI, Zheltovsky NV. Electronic absorption and emission spectra of nucleic acids and their components: Some questions of theory and experiment. Int. J. Quant. Chem. 1980; 17(2):307-20.
[6] Morozov TB., Bazhulina HP. Electronic structure, spectroscopy and reactivity of molecules: nucleobases, vitamins B6 and their analogs. Moscow: Nauka, 1989. 288 p.
[7] Hovorun DM. A structural isomerism of nucleotide bases: AMI calculation. Biopolym Cell. 1997; 13(2):127-34.
[8] Rubin YuB, Rubin ., Sorokin VA. Quantum-mechanical study of nucleic acid bases cations. Biofiz. visnik. 1998. 1:50-56.
[9] Radchenko ED, Plokhotnichenko AM, GG Sheina, Blagoy YuP. Infrared and electron-oscillation spectra of adenine and substitutes in argon matrix. Biofizika. 1984; 29(4):553-9.
[10] Plochocka D, Rabczenko A, Davies DB. Intramolecular hydrogen bonding and molecular conformations of nucleosides. N (6)-dimethyl-2',3'-isopropylidene adenosine. Biochim Biophys Acta. 1977;476(1):1-15.
[11] Lakshman M.K., Lehr R.E. Solvent dependent changes in the proton NMR spectra of 2'-deoxyadenosine and its derivatives. Nucleosides and Nucleotides. 1992; 11 (5):1039-46.
[12] Kierdaszuk B., Johansson C., Drakenberg T., Stolarski R., Shugar D. Mechanism of hydroxylamine mutagenesis: Role of tautomerism, conformation and proton exchange on base pairing between the promutagen N6 methoxyadenosine and uridine. Biophysical Chemistry. 1993; 46 (3):207-215.
[13] Etter M., Reutzel S.M., Choo C.G. Self-organization of adenine and thymine in solid state. J. Amer. Chem. Soc. 1993; 115(10):4411-4412.
[14] Arakawa E.T., Emerson L.C., Juan S.I., Ashley J.C., Williams M.W. The optical properties of adenine from 1.8 to 80 eV. Photochem. Photobiol, 1986; 44(3):349-353.
[15] Slowikowska J.M., Wozniak K. Influence of hydrogen bonding on the geometry of the adenine fragment. Journal of Molecular Structure. 1996; 374 (1-3):327-337.
[16] Tselepi-Kalouli E1, Katsaros N. Ruthenium(III) ion complexes with nucleic acid bases and nucleosides. J Inorg Biochem. 1988;34(1):63-74.
[17] Raznoshinsky AI, Scherbo SH, Yuzhakov VI. Electronic structure and spectral-luminescent properties of some methylated purines. Zh. fiz. Khim. 1990; 64(5) :1266-1272.
[18] Nowak M.J., Lapinski L., Kwiatkowski J.S., Leszczynski J. Molecular structure and infrared spectra of adenine. Experimental matrix isolation and density functional theory study of adenine 15N isotopomers. Journal of Physical Chemistry. 1996; 100 (9):3527-3534.
[19] Nowak M.J., Lapinski L., Kwiatkowski J.S. An infrared matrix isolation study of tautomerism in purine and adenine. Chemical Physics Letters. 1989; 157 (1-2):14-18.
[20] Nowak MJ, Rostkowska H, Lapinski L, Kwiatkowski JS, Leszczynski J. Tautomerism N(9)H - N(7)H of purine, adenine, and 2-chloroadenine: combined experimental IR matrix isolation and ab initio quantum mechanical studies. J Phys Chem. 1994;98(11):2813–6.
[21] Maes G., Schoon K., Houben L., Smets J., Adamowicz L. Combined matrix-isolation FT-IR and ab initio 6-31++-G** studies on tautomeric properties of nucleic acid bases ans simpler model molecules. Book of Abstracts of XXII Congr. On Moyi. Spectrosc, (Balatofured, 25-26 August 1996). Balatofured 1996 p. 315.
[22] Schoone, K., Houben, L., Smets, J., Adamowicz, L., Maes, G. Matrix-isolation FT-IR and ab initio 6-31++G** study of 1 -CH3-adenine tautomerism Spectrochim. Acta. 1996, 52, p. 383.
[23] Lin J, Yu C, Peng S, Akiyama I, Li K, Lee LK, LeBreton PR. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J Am Chem Soc. 1980;102(14):4627–31.
[24] Brown RD, Godfrey PD, McNaughton D, Pierlot AP. A study of the major gas-phase tautomer of adenine by microwave spectroscopy. Chem Phys Lett. 1989;156(1):61–3.
[25] Borodavkin AV, Budovsky EI, Morozov V. et al Spectral properties and electronic structures of neutral and ionic forms of nucleic acid components. III. Adenine and its derivatives Moscow: VINITI, 1974. 1436 74 —28 p.
[26] Handbook of Biochemistry and Molecular Biology. Nucleic Acids, 1, Ed. G. D. Fasman. Boca Raton: CRC press 1986 p. 637.
[27] (1986) Handbook of Biochemistry and Molecular Biology. Nucleic Acids, 2, p. 923. Ed. G. D. Fasman. Boca Raton: CRC press
[28] Maslova RN, Lesnik EA, Varshavskii IaM. Kinetics and mechanism of the 3H to 1H in C(8)H groups of purine derivatives. Mol Biol (Mosk). 1975;9(2):310-20.
[29] Baumruk K., Poliacek P.K., Stepanek J. Protonation of adenine and its derivatives in aqueous solution: A Raman study. Spectroscopy of Biological Molecules. State of the Art-, Eds A. Bertoluzza, S. Fagnano, P. Monti. Bologna: Esculapio. 1989; 207-208.
[30] Thrierr C, Leng M. A study of methylated polyadenylic acid. Eur J Biochem. 1971;19(1):135-42.
[31] Charland J.-P., Viet M.T.P., St-Jacques M., Beauchamp A.L. Multinuclear NMR study of the disproportionation and syn/anti isomerism in solutions of amino-substituted methylmercury derivatives of adenine and 9-methyladenine. Journal of the American Chemical Society. 1985; 107 (26):8202-8211.
[32] Samijlenko SP, Kolomiets IM, Kondratyuk IV, Stepanyugin AV. Model considerations on physico-chemical nature of protein-nucleic acid contacts through amino acid carboxylic groups: Spectroscopic data. Biopolym Cell. 1998; 14 (1):47-53.
[33] Pivovarov VB, Reva ID, Stepanyan SG Sheina GG, Blagoi P. Study iminoformy 1-methyladenine in cryomatrix argon and in solution by IR spectroscopy. Biophysics. 1995. 40(6):1178—1188.