Biopolym. Cell. 1999; 15(5):374-382.
Structure and Function of Biopolymers
Theoretical ab initio study of the interconversion barriers of glycine and a-alanine conformers
1Stepanian S. G.
  1. B. I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine
    47, Prospekt Lenina, Kharkiv, Ukraine, 61103

Abstract

Ab initio quantum-chemical calculations were performed to investigate the interconversion barriers for the most stable glycine and α-alanine conformers. The calculations were carried out at the HF and MP2 levels of the theory with the double split valence basis set augmented with polarisation and diffuse shells on all atoms (6–3I++G**). The tow energy barriers separating some glycine and α-alanine conformers were found due to the calculations. They allow the conformers easily to interconvert to lower energy forms. The results obtained are in good agreement with the experimental studies of the glycine and α-alanine conformational structure and explain why from three glycine conformers and five α-alanine conformers predicted to have relative energies within 7 kJ/mol only two conformers of every amino acid were observed experimentally and why the third stable glycine conformcr was observed in low temperature inert gas matrices only at the temperature less than 13 K. The results presented demonstrate that structural investigations of the flexible molecules such as amino acids and oligopeptides having many-minimum potential energy surface should be based not only on the conformer relative energies but the barriers between the conformers must be taken into account.

References

[1] Jonsson PG, Kuick A. Precision neutron diffraction structure determination of protein and nucleic acid components. III. The cryslal and molecular structure of the amino acid glycine. Acta Cryst. 1972; 28(6)1821-1833.
[2] Lehmann MS, Koetzle TF, Hamilton WC. Precision neutron diffraction structure determination of protein and nucleic acid components. I. The crystal and molecular structure of the amino acid L-alanine. J Am Chem Soc. 1972;94(8):2657-60.
[3] Iijima K, Tanaka K, Onuma S. Main conformer of gaseous glycine: molecular structure and rotational barrier from electron diffraction data and rotational constants. Journal of Molecular Structure, 1991; 246(3-4):257-266.
[4] Iijima K., Beagle, B. An electron diffraction study of gaseous ?-alanine, NH2CHCH3CO2H. Journal of Molecular Structure. 1991; 248(1-2):133-142.
[5] Brown RD, Godfrey PD, Storey JWV, Bassez M-P. Microwave spectrum and conformation of glycine. J Chem Soc. 1978;(13):547-8.
[6] Suenram RD, Lovas FJ. Millimeter wave spectrum of glycine. J Mol Spectrosc. 1978;72(3):372–82.
[7] Suenram R.D., Lovas F.J. Millimeter wave spectrum of glycine. A new conformer . Journal of the American Chemical Society, 1980; 102 (24):7180-7184.
[8] Schafer L., Sellers H.L., Lovas F.J., Suenram R.D. Theory versus experiment: The case of glycine [10]. Journal of the American Chemical Society, 1980; 102 (21):6566-6568.
[9] Godfrey P.D., Brown R.D. Shape of glycine. Journal of the American Chemical Society. 1995; 117 (7):2019-2023.
[10] Lovas F.J., Kawashima Y., Grabow J.-U., Suenram R.D., Fraser G.T., Hirota E. Microwave spectra, hyperfine structure, and electric dipole moments for conformers I and II of glycine. Astrophysical Journal Letters, 1995; 455 (2 PART 2):L201-L204.
[11] Godfrey P.D., Firth S., Hatherley L.D., Brown R.D., Pierlot A.P. Millimeter-wave spectroscopy of biomolecules: Alanine. Journal of the American Chemical Society, 1993; 115(21): 9687-9691.
[12] Sheina GG, Radchenko ED, Ivanov AO Stepanian, SG, Blagoi Yu.P. Vibrational spectra of leucine. Zh fiz khim. 1988; 62(4):985—990.
[13] Reva ID, SG Stepanian, ED Radchenko intramolecular hydrogen bond and the conformational structure of proline: a study by IR spectroscopy in an argon matrix. Khim fiz. 1993; 12(7):966—972.
[14] Radchenko E. D., Reva I.D., Plokhotnichenko A. M., Stepanian S. G., Sheina G. G., Blagoi Yu. P. Investigation of the glycine molecular structure by the matrix IR-spectroscopy. Biopolym. Cell. 1992; 8(1):62-72
[15] Reva I.D., Stepanian S.G., Plokhotnichenko A.M., Radchenko E.D., Sheina G.G., Blagoi Yu.P. Infrared matrix isolation studies of amino acids. Molecular structure of proline. Journal of Molecular Structure,1994; 318(C): 1-13.
[16] Reva I.D., Plokhotnichenko A.M., Stepanian S.G., Ivanov A.Yu., Radchenko E.D., Sheina G.G., Blagoi Y.P. The rotamerization of conformers of glycine isolated in inert gas matrices. An infrared spectroscopic study. Chemical Physics Letters, 1995; 232(1-2):141-148.
[17] Stepanian S.G., Reva I.D., Radchenko E.D., Rosado M.T.S., Duarte M.L.T.S., Fausto R., Adamowicz L. Matrix-isolation infrared and theoretical studies of the glycine conformers. Journal of Physical Chemistry A, 1998; 102(6):1041-1054.
[18] Stepanian S.G., Reva I.D., Radchenko E.D., Adamowicz L. Conformational behavior of ?-alanine. Matrix-isolation infrared and theoretical DFT and ab initio study. Journal of Physical Chemistry A, 1998 102 (24):4623-4629.
[19] Ivanov A.Yu., Plokhotnichenko A.M., Izvekov V., Sheina G.G., Blagoi Yu.P. FTIR investigation of the effect of matrices (Kr, Ar, Ne) on the UV-induced isomerization of the monomeric links of biopolymers. Journal of Molecular Structure, 1997 408-409:459-462.
[20] Snyder L.E., Hollis J.M., Suenram R.D., Lovas F.J., Brown L.W., Buhl D. An extensive galactic search for conformer II glycine. Astrophys. J, 1983; 268:123-128.
[21] Yu D., Rauk A., Armstrong D.A. Radicals and ions of glycine: An ab initio study of the structures and gas-phase thermochemistry. Journal of the American Chemical Society, 1995; 117(6):1789-1796.
[22] Barone V., Adamo C., Lelj F. Conformational behavior of gaseous glycine by a density functional approach. The Journal of Chemical Physics, 1995; 102 (1):364-370.
[23] Csaszar A. Onthee structure of free glycine and a-alanine. J. Moyi. Struct,1995; 346:141-152.
[24] Hoyau S., Ohanessian G. Absolute affinities of ?-amino acids for Cu+ in the gas phase. A theoretical study. Journal of the American Chemical Society, 1997; 119 (8): 2016-2024.
[25] Lelj F., Adamo C., Barone V. Role of Hartree-Fock exchange in density functional theory. Some aspects of the conformational potential energy surface of glycine in the gas phase. Chemical Physics Letters,1994; 230 (1-2):189-195.
[26] Hu, C.-H., Shen, M., Schaefer III, H.F. Glycine conformational analysis (1993) Journal of the American Chemical Society, 115 (7), pp. 2923-2929.
[27] Csaszar A.G. Conformers of gaseous glycine. Journal of the American Chemical Society, 1992; 114(24):9568-9575.
[28] Frey R.F., Coffin J., Newton S.Q., Ramek M., Cheng V.K.W. Momany, F.A., Schafer, L. Importance of correlation-gradient geometry optimization for molecular conformational analyses. Journal of the American Chemical Society, 1992; 114(13):5369-5377.
[29] Yu D., Armstrong D.A., Rauk A. Hydrogen bonding and internal rotation barriers of glycine and its zwitterion (hypothetical) in the gas phase. Can. J. Chem, 1992; 70:1762-1772.
[30] Jensen J.H., Gordon M.S. The Conformational Potential Energy Surface of Glycine: A Theoretical Study. Journal of the American Chemical Society, 1991; 113 (21):7917-7924.
[31] Ramek M., K.W. Cheng V., Frey R.F., Newton S.Q., Schafer L. The case of glycine continued: some contradictory SCF results. Journal of Molecular Structure: THEOCHEM, 1991; 235 (1-2):1-10.
[32] Csaszar A.G. Conformers of gaseous ?-alanine. Journal of Physical Chemistry, 1996; 100(9):3541-3551.
[33] Jensen J.H., Baldridge K.K., Gordon M.S. Uncatalyzed peptide bond formation in the gas phase () Journal of Physical Chemistry, 1992; 96 (21):8340-8351.
[34] Palla P., Petrongolo C., Tomasi J. Internal rotation potential energy for the glycine molecule in its zwitterionic and neutral forms. A comparison among several methods. Journal of Physical Chemistry, 1980; 84 (4):435-442.
[35] Gronert, S., O'Hair, R.A.J. Ab initio studies of amino acid conformations. 1. The conformers of alanine, serine, and cysteine (1995) Journal of the American Chemical Society, 117 (7), pp. 2071-2081.
[36] Pople J.A., Seeger R., Krishnan R. Variational Configuration interaction methods and comparison with perturbation theory. Int. J. Quant. Chem. Symp, 1977; 11:149-163.
[37] Schmidt MW, Baldridge KS, Baatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su A, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system (CAMESS) J. Comput. Chem, 1993 (14):1347-1363.