Biopolym. Cell. 1999; 15(3):195-199.
Reviews
Double helical forms of poly (A): possible involvement in biological processes
1Zarudnaya M. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

In this short renew unique conformational possibilities of polyadenylic acid are described. The possibility of double oligo(A)-helices formation in RNA biological systems has been discussed. It is proposed that the basis for stabilization effect of ELAV-like proteins is their ability to form internal double oligo(A)-helices in the poly(A) tails of specific mRNAs

References

[1] Manley JL. Messenger RNA polyadenylylation: a universal modification. Proc Natl Acad Sci U S A. 1995;92(6):1800-1.
[2] Adler AJ, Grossman L, Fasman GD. Polyriboadenylic and polydeoxyriboadenylic acids. Optical rotatory studies of pH-dependent conformations and their relative stability. Biochemistry. 1969;8(9):3846-59.
[3] Finch JT, Klug A. Two double helical forms of polyriboadenylic acid and the pH-dependent transition between them. J Mol Biol. 1969;46(3):597-8.
[4] Janik B, Sommer RG, Bobst AM. Polarography of polynucleotides. II. Conformations of poly(adenylic acid) at acidic pH. Biochim Biophys Acta. 1972;281(2):152-68.
[5] Lerner DB, Kearns DR. Proton and phosphorus NMR investigation of the conformational states of acid polyadenylic double helix. Biopolymers 1981 20(4):803—16.
[6] Zarudnaya MI, Zheltovskii NV. Affinity electrophoresis investigation of the interaction between homopolyribonucleotides and the lysine ester dication. Mol. Biol (Mosk). 1992 26(1):110—117.
[7] Zarudnaia MI, ZHeltovskii NV. Electrophoretic study of conformational transitions in poly(A) at acid pHs. Mol Biol (Mosk). 1995;29(5):1040-7.
[8] Zarudnaya MI. Study of conformational transitions in poly (A) by the buffer capacity technique. Mol Biol (Mosk). 1998;32(3):508-14.
[9] Holcomb DN, Timasheff SN. Temperature dependence of the hydrogen ion equilibria in poly(riboadenylic acid). Biopolymers. 1968;6(4):513-29.
[10] Bobst AM, Rottman F, Cerutti PA. Effect of the methylation of the 2'-hydroxyl groups in polyadenylic acid on its structure in weakly acidic and neutral solutions and on its capability to form ordered complexes with polyuridylic acid. J Mol Biol. 1969;46(2):221-34.
[11] Thrierr C, Leng M. A study of methylated polyadenylic acid. Eur J Biochem. 1971;19(1):135-42
[12] Ikehara M, Hattori M, Fukui T. Synthesis and properties of poly(2-methyladenylic acid). Formation of a poly(A)-poly(U) complex with Hoogsteen-type hydrogen binding. Eur J Biochem. 1972;31(2):329-34.
[13] Samijlenko SP, Kolomiets IM, Kondratyuk IV, Stepanyugin AV. Model considerations on physico-chemical nature of protein-nucleic acid contacts through amino acid carboxylic groups: spectroscopic data. Biopolym. Cell. 1998; 14(1):47-53
[14] Kondratyuk IV. Investigation of physico-chemical nature of elementary processes of molecular recognition by NMR, vibrational spectroscopy and computer simulation Kyiv: Ph. D. Thesis, 1996. 19 p.
[15] Hartman KA, McDonald-Ordzie PE, Kaper JM, Prescott B, Thomas GJ Jr. Studies of virus structure by laser-Raman spectroscopy. Turnip yellow mosaic virus and capsids. Biochemistry. 1978;17(11):2118-23.
[16] Prescott B, Sitaraman K, Argos P, Thomas GJ Jr. Protein-RNA interactions in belladonna mottle virus investigated by laser Raman spectroscopy. Biochemistry. 1985;24(5):1226-31.
[17] Hellendoorn K, Michiels PJ, Buitenhuis R, Pleij CW. Protonatable hairpins are conserved in the 5'-untranslated region of tymovirus RNAs. Nucleic Acids Res. 1996;24(24):4910-7.
[18] Zarudna MI. The formation of poly (A) double-stranded helices and their possible role in biological processes. 2-nd Meeting UBS Kharkiv, 1998, p 11.
[19] Zarudna MI, Hovorun DM. Structural transitions in poliadeniloviy acid: possible molecular mechanisms of the functioning of mRNA poly (A) tails. Dopovidi Nats Akad Nauk Ukrainy. 1998;(12):155-60.
[20] Rich A, Diivies DR, Crick FHC, Watson JD. The molecular structure of polyadenylic acid. J Mol Biol. 1961;3:71-86.
[21] Birih KR. Conference "Molecular biology of RNA: translation, stability and localization of mRNA". Rus. J. Bioorg. Chem 1998 24, N 6:476—478.
[22] Sachs A, Wahle E. Poly(A) tail metabolism and function in eucaryotes. J Biol Chem. 1993;268(31):22955-8.
[23] Ma WJ, Chung S, Furneaux H. The Elav-like proteins bind to AU-rich elements and to the poly(A) tail of mRNA. Nucleic Acids Res. 1997;25(18):3564-9.
[24] Fan XC, Steitz JA. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 1998;17(12):3448-60.
[25] Peng SS, Chen CY, Xu N, Shyu AB. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 1998;17(12):3461-70.
[26] Abe R, Sakashita E, Yamamoto K, Sakamoto H. Two different RNA binding activities for the AU-rich element and the poly(A) sequence of the mouse neuronal protein mHuC. Nucleic Acids Res. 1996;24(24):4895-901.
[27] Sachs A. B., Davis R. W., Kornberg R. D. A single domain of yeast poly (A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol. 1987;7(9):3268-76.
[28] Nemeth A, Krause S, Blank D, Jenny A, Jenö P, Lustig A, Wahle E. Isolation of genomic and cDNA clones encoding bovine poly(A) binding protein II. Nucleic Acids Res. 1995;23(20):4034-41.
[29] Burd CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265(5172):615-21.
[30] Zarudnaya MI. Co-operative formation of three double helical forms of poly (A): proton buffer capacity and electrophoresis data. Conf. on Physics of Biol, systems Kyiv, 1998:52.
[31] Brahms J, Michelson AM, Van Holde KE. Adenylate oligomers in single- and double-strand conformation. J Mol Biol. 1966;15(2):467-88.
[32] de Melo Neto OP, Standart N, Martins de Sa C. Autoregulation of poly(A)-binding protein synthesis in vitro. Nucleic Acids Res. 1995;23(12):2198-205.