Biopolym. Cell. 1999; 15(2):163-167.
Gene-Engineering Biotechnology
Comparative analysis of the spectrum of crystal proteins and Bacillus thuringiensis of new plasmids strains
1Isakova I. A., 1Rimar S. E., 2Kuznetsova L. N., 1Kordyum V. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. South Branch of the Institute of Agricultural Microbiology UAAN
    107, Karl Marx Str., Gvardeyskoe, Simferopol district, Crimea, Ukraine, 97513

Abstract

The spectrum of insecticidal crystal proteins produced by 9 new B. thuringiensis strains isolated in Ukraine was studied. These strains demonstrated high toxicity to Lepidoptera and lower toxicity to Coleoptera (Colorado potato beettle larvae) in biological tests. It was shown that 5 strains produce high molecular weight proteins (137–164 kD), 3 strains produce 76.5 kD proteins, and one produce two proteins (96.5 kD and 77 kD). All the studied strains contain the spectrum of plasmids of both low molecular weight (less than 10 MD) and high molecular weight (more than 30 MD). The strains producing crystal proteins of similar molecular weight differ by plasmid composition.

References

[1] Hofte H, Whiteley HR. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989;53(2):242-55.
[2] Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62(3):775-806.
[3] Feitelson JS, Payne J, Kim L. Bacillus thuringiensis, insects and beyond. Nat Biotechnology. 1992; 10:271—275.
[4] Obukowicz MG, Perlak FJ, Kusano-Kretzmer K, Mayer EJ, Watrud LS. Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene. 1986;45(3):327-31.
[5] Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS, Turner JT. Integrative Cloning, Expression, and Stability of the cryIA(c) Gene from Bacillus thuringiensis subsp. kurstaki in a Recombinant Strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol. 1994;60(2):501-8.
[6] Estruch JJ, Carozzi NB, Desai N, Duck NB, Warren GW, Koziel MG. Transgenic plants: an emerging approach to pest control. Nat Biotechnol. 1997;15(2):137-41.
[7] Malvar T, Gawron-Burke C, Baum JA. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryIIIA overproduction. J Bacteriol. 1994;176(15):4742-9.
[8] Lecadet MM, Chaufaux J, Ribier J, Lereclus D. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation. Appl Environ Microbiol. 1992;58(3):840-9.
[9] Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
[10] Zaenen I, Van Larebeke N, Van Montagu M, Schell J. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol. 1974;86(1):109-27.
[11] Casse F, Boucher C, Julliot JS, Michel M, Denarie J. Identification and Characterization of Large Plasmids in Rhizobium meliloti using Agarose Gel Electrophoresis. J Gen Microbiol. 1979; 113(2):229—242.
[12] Carlson CR, Caugant DA, Kolsto AB. Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains. Appl Environ Microbiol. 1994;60(6):1719-25.
[13] Kronstad JW, Schnepf HE, Whiteley HR. Diversity of locations for Bacillus thuringiensis crystal protein genes. J Bacteriol. 1983;154(1):419-28.