Biopolym. Cell. 1999; 15(2):149-153.
Structure and Function of Biopolymers
Dielectric investigations of the ultraviolet radiation effect on the water solutions of nucleic acid bases
1Chichak S. A., 1Sukhoviya M. I., 1Kikineshi A. A.
  1. Uzhhorod National University
    54, Voloshyna Str., Uzhhorod, Ukraine, 88000


Dispersion of the dielectric properties of nucleic acid bases: impedance, complex dielectric constants, dielectric losses, capacity are studied. Cole-Cole diagrams are obtained in the frequency range 10 –10 Hz. The variation of the relaxation structures of pyrimidine bases are shown under the ultraviolet radiation influence.


[1] Rambidi MG, Zamalin VM. Molecular microelectronics: physical background and possible ways of development. Poverkhnost. 1986. N 8:5—30.
[2] Rowell F. Biological receprors in biosensors. Biochem. Soc. Trans. 1991. 19, N 1:32—36.
[3] Korpan YaI, Gonchar MV, Starodub NF, El'skaya AV. Biosensors based on microorganism cells Biopolym. Cell. 1995; 11(2):15-28
[4] Soldatkin AP. Urease-based biosensor with improved sensitivity for heavy metal ions analysis. Biopolym. Cell. 1997; 13(5):377-379
[5] Starikov EB. Nonlinear Physics of nucleic acids: solitons or autosolitons. Mol. Biol. 1990. 24, N 6:1504—1524.
[6] Evdokimov IuM, Skuridin SG, Salianov VI, Rybin VK, Palumbo M. Principles of creating biotransducers based on nucleic acid liquid crystals. Biofizika. 1990;35(5):731-8.
[7] Edwards G, Ying G, Tribble J. Role of counterions in the gigahertz relaxation of wet DNA. Phys Rev A. 1992;45(12):R8344-R8347.
[8] Maleev VIa, Semenov MA, Gasan AI, Kashpur VA. Physical properties of the DNA-water system. Biofizika. 1993;38(5):768-90.
[9] Bao JZ, Davis CC, Swicord ML. Microwave dielectric measurements of erythrocyte suspensions. Biophys J. 1994;66(6):2173-80.
[10] Chichak S. A., Sukhoviya M. I., Shafran'osh I. I., Kikineshi A. A. study the dispersion of the optical and electrical parameters of biological objects to simulate changes in their structure. Probl. fiz. i biomed. elektroniki. Kiyev: Izd-vo KPI, 1996:46—48.
[11] Tornuev Yu V. Khachatryan RG electrical impedance of biological tissues. M.: Izd VZPI, 1990. 154.
[12] Andreyev YeA, Belyy MU, Sit'ko SP. Reaction of the human body to electromagnetic radiation of millimeter range. Vestn. AN SSSR. 1985. N 1:24—32.
[13] Stashuk V. D., Tarapun V. A. analysis of the foundations of impedance tomography. Elektronika i svyaz'. 1997; 1, N 2:203—204
[14] Grigor'ev IuG. Human being in an electromagnetic field (present situation, expected bioeffects and evaluation of danger). Radiats Biol Radioecol. 1997;37(4):690-702.
[15] Nad' Sh.B. dielectrometry, Moscow: Energiya, 1976. 200.
[16] Shakhparonov MI Mechanisms of fast processes in liquids. M.: Vyssh. shkola, 1980. 352.
[17] Ahadov Ya.Yu. Dielectric properties of binary solutions. Moscow: Nauka, 1977. 281 p.
[18] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[19] Porschke D. Elementary steps of base recognition and helix-coil transitions in nucleic acids. Mol Biol Biochem Biophys. 1977;24:191-218.
[20] Bogatina NI, Chmutov VM. Anomalies in the dielectric properties of cytosine monohydrate monocrystals and textured anhydrous cytosine polycrystals. Biofizika. 1980;25(4):600-4.
[21] Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. Mirror symmetrical conformational states of canonical nucleic acid bases. Doklady Akad Nauk Ukrainy. 1992; (2):66-9.
[22] Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Zheltovsky NV. About nonplanarity and dipole nonstability of canonical nucleotide bases methylated at glycosidic nitrogen. Dopovidi Nats Akad Nauk Ukrainy. 1995;(6):117-9.
[23] Govorun DM, Mischuk YaR, Kondratyuk IV, Zheltovs'kyi MV. Dynamic stereo isomerism of Watson-Crick nucleotide base pairs. Dopovidi Nats Akad Nauk Ukrainy. 1995;(11):121-3.
[24] Brown RD, Godfrey PD., McNaughton D, Pierlot AP. Tautomers of cytosine by microwave spectroscopy. J. Amer. Chem. Soc. 1989; 111(6):2308—2310.
[25] Sponer J, Hobza P. Nonplanar geometries of DNA bases. Ab initio second-order Moeller-Plesset study. J Phys Chem. 1994. 98(12): 3161—3164.
[26] Sukhoviia MI, Shevera VS. Initiation of defects in the secondary structure of DNA by laser radiation. Biofizika. 1980;25(5):913-4.
[27] Zheltovsky NV, VI Danilov, The current state of electronic radiation mechanisms of photochemical reactions of nucleic acids and their components. The structure and function of biopolymers. K: Naukova Dumka, 1979. iss 23: 13-22.
[28] Patrick MH, Snow JM. Studies on thymine-derived UV photoproducts in DNA--II. A comparative analysis of damage caused by 254 nm irradiation and triplet-state photosensitization. Photochem Photobiol. 1977;25(4):373-84.
[29] Karle I. L. Crystal and molecular structure of photo-products from nucleic acids II Photochemistry arid photobiology of nucleic acids. Ed. S. Y. Wang. New York: Acad press, 1976. Vol. 1:483—519.
[30] Bersuker IB The Jahn-Teller effect and vibronic maymodeystvin in modern chemistry. M.: Nauka, 1987. 344.