Biopolym. Cell. 1998; 14(5):449-452.
Structure and Function of Biopolymers
Cloning and bacterial expression of the cytokine-like noncatalytic domain of bovine tyrosyl-tRNA synthetase
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
Cytokine-like noncatalytical C-terminal domain of mammalian tyrosyl-tRNA synthetase (D322-S528) has been cloned and expressed in bacterial expression system using pET15b vector. Recombinant protein has been isolated by metal-chelating chromatography on the Ni-NTA agarose into a homogenous state according to gel-electrophoresis data.
Full text: (PDF, in Russian)
References
[1]
Jasin M, Regan L, Schimmel P. Dispensable pieces of an aminoacyl tRNA synthetase which activate the catalytic site. Cell. 1984;36(4):1089-95.
[2]
Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142. Review.
[3]
Cirakoglu B, Waller JP. Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm? Eur J Biochem. 1985;149(2):353-61.
[4]
Korneliuk AI, Kurochkin IV, Matsuka GKh. [Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties]. Mol Biol (Mosk). 1988;22(1):176-86.
[5]
Kurochkin IV, Korneliuk AI, Matsuka GKh. [Interaction of eukaryotic tyrosyl-tRNA-synthetase with high molecular weight RNA]. Mol Biol (Mosk). 1991;25(3):779-86.
[6]
Levanets OV, Naidenov VG, Woodmaska MI, Matsuka GH, Kornelyuk AI. Cloning of cDNA encoding C-terminal part of mammalian tyrosyl-tRNA synthetase using of PCR-amplified radioactive probe. Biopolym Cell. 1997; 13(2):121-6.
[7]
Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8
[8]
Kao J, Ryan J, Brett G, Chen J, Shen H, Fan YG, Godman G, Familletti PC, Wang F, Pan YC, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267(28):20239-47.
[9]
Kao J, Houck K, Fan Y, Haehnel I, Libutti SK, Kayton ML, Grikscheit T, Chabot J, Nowygrod R, Greenberg S, et al. Characterization of a novel tumor-derived cytokine. Endothelial-monocyte activating polypeptide II. J Biol Chem. 1994;269(40):25106-19.
[10]
Tas MP, Murray JC. Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol. 1996;28(8):837-41.
[11]
Dardel F, Fayat G, Blanquet S. Molecular cloning and primary structure of the Escherichia coli methionyl-tRNA synthetase gene. J Bacteriol. 1984;160(3):1115-22.
[12]
Mechulam Y, Fayat G, Blanquet S. Sequence of the Escherichia coli pheST operon and identification of the himA gene. J Bacteriol. 1985;163(2):787-91.
[13]
Quevillon S, Agou F, Robinson JC, Mirande M. The p43 component of the mammalian multi-synthetase complex is likely to be the precursor of the endothelial monocyte-activating polypeptide II cytokine. J Biol Chem. 1997;272(51):32573-9.
[14]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
[15]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.