Biopolym. Cell. 1998; 14(4):268-276.
Biosensors based on conductometric detection
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The present paper is a self-review on the development of about 20 conductometric biosensors based on planar electrodes and containing different biological material (enzymes, cells, antibodies), bio-mimics or synthetic membranes, including Imprinting polymers, as a sensitive element. Highly specific, sensitive, simple, fast and cheap determination of different analytes makes them promising for needs of medicine, biotechnology, environmental control, agriculture and food industry. Non-specific interference of back-ground ions may be overcome by the differential mode of measurement, the usage of rather concentrated sample buffer and additional negatively or positively charged membranes, which decrease buffer capacity influence and extend a dynamic range of sensors response. For development of easy-to-use small conductometric immunosensors several approaches seem to be promising: i) the usage of polyaniline as electroconductive label for antibodies detection in competitive electroimmunoassay; ii) the elaboration of multilayer structures with phtalocyanine films; iii) the usage of acrylic copolymeric membranes. The advantages and disadvantages of conductometric biosensors created are discussed. For future commercialisation our effort are aimed to unite a thin-film technology with membranes deposition and to find the ways of membrane stabilisation, including bio-mimics creation, utilisation of bioaffinity polymeric membranes, imprinting polymers etc.
Full text: (PDF, in English)
References
[1]
Gopel W, Hesse J, Zemel JN. Sensors. A comprehensive survey. Weinheim: VCH VerlagsgeseUschaft, 1991; Vol. 2, pt 1.
[2]
Hall EA. Biosensors. London: Open Univ. press Milton Keynes, 1990.
[3]
Schmid RD, Karube J. Biosensor and "Bioelectronics". Biotechnology. Eds H. J. Rehm, G. Reed. Weinheim: VCH VerlagsgeseUschaft, 1988. Vol. 6b: 317-365.
[4]
Turner APF. Current trends in biosensor research and development. Sens Actuators. 1989;17(3-4):433–50.
[5]
Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates— a way towards artificial antibodies. Angew Chem Int Ed Engl. 1995;34(17):1812–32.
[6]
Hanss M, Rey A. [Use of conductometry in the study of enzymic reactions. Urea-urease system]. Biochim Biophys Acta. 1971;227(3):630-8.
[9]
Chin W, Kroontje W. Conductivity method for determination of urea. Anal Chem. 1961;33(12):1757–60.
[10]
Dumontier M, Hanss M. Mesure conductim?trique d'une activit? gluconolactonasique. Biochimie. 1974. 56(9): 1291-2.
[11]
Hill CR, Tomalin G. A conductometric method for the assay of amidase and peptidase activities. Anal Biochem. 1982;120(1):165-75.
[12]
Watson LD, Maynard P, Cullen DC, Sethi RS, Brettle J, Lowe CR. A microelectronic conductimetric biosensor. Biosensors. 1987-1988;3(2):101-15.
[13]
Lowe CR. PCX International Patent WO 84. 03945, 1984. Chem. Abstr. 1985. 103: 19418.
[14]
Arkhipova VN, Dzyadevich SV, Soldatkin AP, El'skaya AV. Enzyme biosensors for penicilline determination based on conductometric planar electrodes and pH-sensitive field effect transistor. Ukr Biokhim Zh. 1996; 68(1):26-31.
[15]
Dziadevich SV, Korpan IaI, Soldatkin AP, Shul'ga AA, Strikha VI, El'skaia AV. [Use of conductometric microsensors for studying kinetic parameters of enzymes]. Ukr Biokhim Zh. 1993;65(5):47-53.
[16]
Shul'ga AA, Soldatkin AP, El'skaya AV, Dzyadevich SV, Patskovsky SV, Strikha VI. Thin-film conductometric biosensors for glucose and urea determination. Biosens Bioelectron. 1994;9(3):217-23.
[17]
Dzydevich SV, Shu?ga AA, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C. Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanalysis. 1994;6(9):752–8.
[18]
Zhylyak GA, Dzyadevich SV, Korpan YI, Soldatkin AP, El’skaya AV. Application of urease conductometric biosensor for heavy-metal ion determination. Sens Actuators B Chem. 1995;24(1-3):145–8.
[19]
Soldatkin AP, El’skaya AV, Shul’ga AA, Jdanova AS, Dzyadevich SV, Jaffrezic-Renault N, et al. Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal Chim Acta. 1994;288(3):197–203.
[20]
Shul’ga AA, Strikha VI, Soldatkin AP, El’skaya AV, Maupas H, Martelet C, et al. Removing the influence of buffer concentration on the response of enzyme field effect transistors by using additional membranes. Anal Chim Acta. 1993;278(2):233–6.
[21]
oldatkin AP, El’skaya AV, Shul’ga AA, Netchiporouk LI, Nyamsi Hendji AM, Jaffrezic-Renault N, et al. Glucose-sensitive field-effect transistor with additional Nafion membrane: Reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal Chim Acta. 1993; 283(2): 695-701.
[22]
Dziadevych SV, Soldatkin OP, Arkhypova VM, Shulha OA, Iel?ka HV. [A conductometric enzymatic glucose sensor. A search for ways to improve analytical characteristics]. Ukr Biokhim Zh. 1995;67(6):53-9.
[23]
Arkhipova VN. Influence of additional positively charged polymer membranes on the analytical characteristics of conductometric glucose biosensors. Biopolym Cell. 1998; 14(3):242-5.
[24]
Korpan YI, Dzyadevich SV, Zharova VP, El'skaya AV. Conductometric biosensor for ethanol detection based on whole yeast cells. Ukr Biokhim Zh. 1994;66(1):78-82.
[25]
Sergeeva T, Lavrik N, Rachkov A. et al. A novel conductometric immunosensor based on tetra-terburyl-copper phtha-Iocyanine thin-films. The Fourth World Congress on Biosensors (Bangkok, Thailand, 29-31 May 1996). Bangkok, 1996: 143.
[26]
Bryk MT, Burban AF, Nigmatullin RR, Melnik AP. Chemical modification of polymer membranes. Ukr Zh Polimerov. 1992;1:63-77.
[27]
Panasyuk TL, Nigmaiullin RR, Piletsky SA, Bryk MT. Membranes in sensor technology. Functional materials. 1995; 1: 12-17.
[28]
Piletsky SA, Piletskaya EV, Elgersma AV, Yano K, Karube I, Parhometz YP, et al. Atrazine sensing by molecularly imprinted membranes. Biosens Bioelectron. 1995;10(9-10):959–64.