Biopolym. Cell. 1998; 14(4):259-267.
Functions of tRNAs and aminoacyl-tRNA synthetases not related to ribosomal protein synthesis
1Matsuka G. Kh.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Activation of amino acids and tRNAs aminoacylation are well known functions of aminoacyl-tRNA syntlwiascs – the components of translation apparatus. This is so-called canonical function of tRNA and aminoacyl-tRNA synthetases. However besides mentioned above tRNAs and aminoacyl-tRNA synthetases participate in some processes not related to the traditional views on the function of these compounds. This brief review is just focused on these non canonical properties of tRNAs and aminoacyl-tRNA synthetases.

References

[1] Lukoshiavichius LIu, Rodovichius GA, Kovalenko MM, Pivoriuna?te II, Prashkiavichius AK. tRNA and aminoacyl-tRNA synthetases from the liver of rabbits in experimental myocardial infarction. Vopr Med Khim. 1983;29(4):65-9.
[2] Kaji H, Novelli GD, Kaji A. A Soluble amino acid-incorporating system from rat liver. Biochim Biophys Acta. 1963;76:474-7.
[3] Kaji A, Kaji H, Novelli GD. Soluble amino acid-incorporating system. I. Preparation of the system and nature of the reaction. J Biol Chem. 1965;240:1185-91.
[4] La Rossa R, Soil D. Other roles of tRNA. Transfer RNA. Cambridge: MIT, 1978: 90-110.
[5] Soffer RL. Aminoacyl-tRNA-protein transferases: a novel class of enzymes catalyzing peptide bond formation. Trans N Y Acad Sci. 1970;32(8):974-88.
[6] Faras AJ, Dahlberg JE, Sawyer RC, Harada F, Taylor JM, Levinson WE, Bishop JM, Goodman HM. Transcription of DNA from the 70S RNA of Rous sarcoma virus. II. Structure of a 4S RNA primer. J Virol. 1974;13(5):1134-42.
[7] Soffer RL. Aminoacyl-tRNA transferases. Adv Enzymol Relat Areas Mol Biol. 1974;40(0):91-139.
[8] Stebbing N, Grantham CA, Kaminski F, Lindley IJ. Protection of mice against encephalomyocarditis virus infection by preparations of transfer RNA. J Gen Virol. 1977;34(1):73-85.
[9] Temin HM. Mechanism of cell transformation by RNA tumor viruses. Annu Rev Microbiol. 1971;25:609-48.
[10] Leibowitz MJ, Soffer RL. Enzymatic modification of proteins. 3. Purification and properties of a leucyl, phenylalanyl transfer ribonucleic acid protein transferase from Escherichia coli. J Biol Chem. 1970;245(8):2066-73.
[11] Lennarz WJ. Studies On Biosynthesis and functions of lipids in bacterial membranes. Accounts Chem Res. 1972;5(11):361–7.
[12] Strominger JL. Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lect. 1968-1969;64:179-213.
[13] Stewart AG, Grantham CA, Dawson KM, Stebbing N. The antiviral activity of ribosomal polynucleotides against encephalomyocarditis virus infection of mice. Arch Virol. 1980;66(4):283-91.
[14] Heanni AL, Chapeville F. tRNA-Uke structure in viral RNA genomes. Transfer RNA: Biological aspects. New York: Cold Spring Harbor Lab., 1980: 539-56.
[15] Pinck M, Yot P, Chapeville F, Duranton HM. Enzymatic binding of valine to the 3' end of TYMV-RNA. Nature. 1970;226(5249):954-6.
[16] Yot P, Pinck M, Haenni AL, Duranton HM, Chapeville F. Valine-specific tRNA-like structure in turnip yellow mosaic virus RNA. Proc Natl Acad Sci U S A. 1970;67(3):1345-52.
[17] Uinbarger HE. Comments on the role of aminoacyl-tRNA in the regulation of amino acid biosynthesis. Transfer RNA: Biological aspects. New York: Cold Spring Harbor Lab., 1980: 453-67.
[18] Waters LC, Mullin BC, Ho T, Yang WK. Ability of tryptophan tRNA to hybridize with 35S RNA of avian myeloblastosis virus and to prime reverse transcription in vitro. Proc Natl Acad Sci U S A. 1975;72(6):2155-9.
[19] Borek E, Rockenbach J, Ryan A. Studies on a mutant of Escherichia coli with unbalanced ribonucleic acid synthesis. J Bacteriol. 1956;71(3):318-23.
[20] Haseltine WA, Panet A, Smoler D, Baltimore D, Peters G, Harada F, Dahlberg JE. Interaction of tryptophan tRNA and avian myeloblastosis virus reverse transcriptase: further characterization of the binding reaction. Biochemistry. 1977;16(16):3625-32.
[21] Cordell B, Swanstrom R, Goodman HM, Bishop JM. tRNATrp as primer for RNA-directed DNA polymerase: structural determinants of function. J Biol Chem. 1979;254(6):1866-74.
[22] Rosa MD, Hendrick JP Jr, Lerner MR, Steitz JA, Reichlin M. A mammalian tRNAHis-containing antigen is recognized by the polymyositis-specific antibody anti-Jo-1. Nucleic Acids Res. 1983;11(3):853-70.
[23] Cordell B, Stavnezer E, Friedrich R, Bishop JM, Goodman HM. Nucleotide sequence that binds primer for DNA synthesis to the avian sarcoma virus genome. J Virol. 1976;19(2):548-58.
[24] Kaji A, Kaji H, Novelli GD. A soluble amino acid incorporating system. Biochem Biophys Res Commun. 1963;10:406-9.
[25] Deutch CE, Scarpulla RC, Soffer RL. Posttranslational NH2-terminal aminoacylation. Curr Top Cell Regul. 1978;13:1-28.
[26] Panet A, Haseltine WA, Baltimore D, Peters G, Harada F, Dahlberg JE. Specific binding of tryptophan transfer RNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase). Proc Natl Acad Sci U S A. 1975;72(7):2535-9.
[27] Panet A, Berliner H. Binding of tRNA to reverse transcriptase of RNA tumor viruses. J Virol. 1978;26(2):214-20.
[28] Shved AD. Antiviral properties of polynucleotides not associated with interferon induction. Mikrobiol Zh. 1982;44(3):75-85.
[29] Stewart TS, Roberts RJ, Strominger JL. Novel species of tRNA. Nature. 1971;230(5288):36-8.
[30] Lindley IG, Stebbing N. Aminoacylation of encephalomyocarditis virus RNA. J Gen Virol. 1977;34(1):177-82.
[31] Litvak S, Tarrag? A, Tarrag?-Litvak L, Allende JE. Elongation factor-viral genome interaction dependent on the aminoacylation of TYMV and TMV RNAs. Nat New Biol. 1973;241(107):88-90.
[32] Verma IM. The reverse transcriptase. Biochim Biophys Acta. 1977;473(1):1-38.
[33] Cashel M. The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J Biol Chem. 1969;244(12):3133-41.
[34] Cavalieri LF, Yamaura I. E. coli tRNAs as inhibitors of viral reverse transcription in vitro. Nucleic Acids Res. 1975;2(12):2315-28.
[35] Matsuka GKh, Babi? TP, Skvirskaia EB, Ovcharenko GV, Semenikhin VI. Biologically inactive transfer RNA in animal livers. Biokhimiia. 1973;38(6):1221-7.
[36] Matsuka GKh, Elskaya AV, KOvalenko MI, Kornelyuk AI. Transfer RNA. Kiev: Naukova dumka. 1976. 219 p.
[37] Scarpulla RC, Deutch CE, Soffer RL. Transfer of methionyl residues by leucyl, phenylalanyl-tRNA-protein transferase. Biochem Biophys Res Commun. 1976;71(2):584-9.
[38] Cusack S, Berthet-Colominas C, H?rtlein M, Nassar N, Leberman R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 A. Nature. 1990;347(6290):249-55.
[39] Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990;347(6289):203-6.
[40] Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. Prog Nucleic Acid Res Mol Biol. 1994;48:83-142.
[41] Vartanian AA, Turpaev KT, Narovlianski? AN, Amchenkova AM, Kiselev LL. Interferons cause accumulation of diadenosine triphosphate (Ap3A) in human monocyte cultures. Dokl Akad Nauk. 1995;344(2):252-5.
[42] Herbert CJ, Labouesse M, Dujardin G, Slonimski PP. The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J. 1988;7(2):473-83.
[43] Kittle JD Jr, Mohr G, Gianelos JA, Wang H, Lambowitz AM. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Genes Dev. 1991;5(6):1009-21.
[44] Guo Q, Lambowitz AM. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core. Genes Dev. 1992;6(8):1357-72.
[45] Miseta A, Woodley CL, Greenberg JR, Slobin LI. Mammalian seryl-tRNA synthetase associates with mRNA in vivo and has homology to elongation factor 1 alpha. J Biol Chem. 1991;266(29):19158-61.
[46] Koontz SW, Schimmel PR. Aminoacyl-tRNA synthetase-catalyzed cleavage of the glycosidic bond of 5-halogenated uridines. J Biol Chem. 1979;254(24):12277-80.
[47] Kovaleva GK, Tarusova NB, Kiselev LL. Hydrolytic activity of bovine tryptophanyl-tRNA-synthetase cause by removal of Zn2+. Mol Biol (Mosk). 1988;22(5):1307-14.
[48] Jakubowski H. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae. EMBO J. 1991;10(3):593-8.