Biopolym. Cell. 1998; 14(1):68-78.
Structure and Function of Biopolymers
Theoretical modelling and experimental investigation of nonlinear dynamic precedes in ensemble of photosynlhetic reaction centers
1Abgaryan G. A., 2Goushcha A. O., 2Kapoustina M. T., 2Kharkyanen V. N.
  1. Yerevan State Medical University named after Mkhitar Heratsi, Ministry of Education and Science of Republic of Armenia
    2, Koryun Str., Yerevan, Republic of Armenia, 0025
  2. Institute of Physics, NAS of Ukraine
    46, Prospect Nauki, Kyiv, Ukraine, 03028

Abstract

The results of theoretical study of dynamic selforganization phenomenon in a specific macromolecular structure, the photosynthetic reaction center (RC), is presented with accounting of the stochastic effects in the RCs ensemble. The description both the photomobilised electron transfer kinetics and structure conformational transitions is based on the solution of the direct Kolmogorov equations using the Markov approach. Both the case of thermodynamically equilibrium system and nonequilibrium one were considered for the variables distribution function which describes the diffusion in the conformational coordinate space. The calculations revealed the bistable system behaviour in a certain interval of electron photomobilization rate. The modelling showed a good agreement with the results of experimental investigation of transient absorbance of the RCs from purple bacteria Rhodopseudomonas sphaeroides.

References

[1] Deisenhofer J, Epp O, Sinning I, Michel H. Crystallographic refinement at 2.3 A resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1995;246(3):429-57.
[2] Allen JP, Feher G, Yeates TO, Rees DC, Deisenhofer J, Michel H, Huber R. Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by x-ray diffraction. Proc Natl Acad Sci U S A. 1986;83(22):8589-93.
[3] Treutlein H, Schulten K, Br?nger AT, Karplus M, Deisenhofer J, Michel H. Chromophore-protein interactions and the function of the photosynthetic reaction center: a molecular dynamics study. Proc Natl Acad Sci U S A. 1992;89(1):75-9.
[4] Schulten K, Tesch M. Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys. 1991;158(2-3):421–46.
[5] Sebban P, Mar?ti P, Hanson DK. Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: insight from combined approaches of molecular genetics and biophysics. Biochimie. 1995;77(7-8):677-94.
[6] DeVault D, Parkes JH, Chance B. Electron tunnelling in cytochromes. Nature. 1967;215(5101):642-4.
[7] Chamorovsky SK, Kononenko AA, Remennikov SM, Rubin AB. The oxidation rate of high-potential c-type cytochrome in the photochemical reaction centre is temperature-independent. Biochim Biophys Acta. 1980;589(1):151-5.
[8] Shaitan KV, Uporov IV, Lukashev EP, Kononenko AA, Rubin AB. Photo-coformationaltransition cause temperature and light effects in charge recombination in the reaction cantre of photosynthetizing bacteria. Mol Biol (Mosk). 1991; 25(3): 695-705.
[9] Yruela I, Churio MS, Gensch T, Braslavsky SE, Holzwarth AR. Optoacoustic and Singlet Oxygen Near-IR Emission Study of the Isolated D1-D2-cyt b-559 Reaction Center Complex of Photosystem II. Protein Movement Associated with Charge Separation. J Phys Chem. 1994;98(48):12789–95.
[10] Gardiner CW. Handbook of stochastic methods. Berlin etc.: Springer, 1985.
[11] Haken N. Synergetics-an introduction. Berlin etc.: Springer, 1978.
[12] Glansdorf P, Prigogine I. Thermodynamics theory of structure stability and fluctuations. London: Wiley, 1971.
[13] Nicolis C, Prigogine I. Selforganization in nonequilibrium systems. New York: Wiley, 1977.
[14] Gushcha AO, Dobrovolskii AA, Kapustina MT, Privalko AV, Kharkyanen VN. New physical phenomenon of dynamical self-organization in molecular electron transfer systems. Phys Lett. 1994;191(5-6):393-7.
[15] Goushcha AO, Kapustina MT, Kharkyanen VN. Nonlinear effect of dynamic self-organization in macromolecular systems caused by photocontrolled electron flux. J Biol Phys. 1994;19(4):273-83.
[16] Christophorov L. Conformation-dependent charge transport: a new stochastic approach. Phys Lett. 1995;205(1):14-7.
[17] Dobrovolskii AA, Filippov AG, Goushcha AO, Privalko AV, Kharkyanen VN. Experimental evidence of dynamic self-organization in the electron transfer system (example of reaction centers of purple bacteria). J Biol Phys. 1994;19(4):285–93.
[18] Goushcha AO, Kharkyanen VN, Holzwarth AR. Nonlinear light-induced properties of photosynthetic reaction centers under low intensity irradiation.J Phys Chem B. 1997;101(2):259–65.
[19] Dobrovolskii AA, Filippov AG, Goushcha AO, Kapoustina MT, Karataev VN, Privalko AV, et al. A new approach to experimental investigation of dynamic self-organization in reaction centers of purple bacteria. J Biol Phys. 1995;21(4):265–72.
[20] Goushcha AO, Berezetska NM, Kapoustina MT, Kharkyanen VN. Two stable electron-conformational states of photoactivated reaction center and their observation in primary donor recovery kinetics. J Biol Phys. 1996;22(2):113–24.
[21] Puchenkov OV, Kopf Z, Malkin S. Photoacoustic diagnostics of laser-induced processes in reaction centers of Rhodobacter sphaeroides. Biochim Biophys Acta. 1995;1231(2):197–212.
[22] Kleinfeld D, Okamura MY, Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes. Biochemistry. 1984;23(24):5780-6.
[23] Malkin S, Churio MS, Shochat S, Braslavsky SE. Photochemical energy storage and volume changes in the microsecond time range in bacterial photosynthesis — a laser induced optoacoustic study. J Photochem Photobiol B. 1994;23(1):79–85.
[24] Mauzerall DC, Gunner MR, Zhang JW. Volume contraction on photoexcitation of the reaction center from Rhodobacter sphaeroides R-26: internal probe of dielectrics. Biophys J. 1995;68(1):275-80.
[25] Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. J Chem Phys. 1956;24(5):966-78.
[26] Marcus RA, Sutin N. Electron transfers in chemistry and biology. Biochim Biophys Acta. 1985;811(3):265–322.
[27] * Agrnon N., Hopfield. .. . Transient kinetics of chemical reactions with bounded diffusion perpendicular to the reaction coordinate: Intramolecular processes with slow conformational changes. J. Chem. Phys. 1983. 78: 6947-6959.
[28] Haken H. Light. Laser Lidht dynamics. Amsterdam: North-Holland, 1985.
[29] Kleinfeld D, Okamura MY, Feher G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ(-)B and free energy and kinetic relations between Q(-)AQB and QAQ(-)B. Biochim Biophys Acta. 1984;766(1):126-40.
[30] McComb JC, Stein RR, Wraight CA. Investigations on the influence of headgroup substitution and isoprene side-chain length in the function of primary and secondary quinones of bacterial reaction centers. Biochim Biophys Acta. 1990;1015(1):156-71.
[31] Beroza P, Fredkin DR, Okamura MY, Feher G. Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1991;88(13):5804-8.
[32] Beroza P, Fredkin DR, Okamura MY, Feher G. Electrostatic calculations of amino acid titration and electron transfer, Q-AQB-->QAQ-B, in the reaction center. Biophys J. 1995;68(6):2233-50.
[33] Gao J-L, Shopes RJ, Wraight CA. Heterogeneity of kinetics and electron transfer equilibria in the bacteriopheophytin and quinone electron acceptors of reaction centers from Rhodopseudomonas viridis. Biochim Biophys Acta. 1991;1056(3):259–72.
[34] Okamura MY, Feher G. Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem. 1992;61:861-96.
[35] Wraight CA. Oxidation-reduction physical chemistry of the acceptor quinone complex in bacterial photosynthetic reaction centers: evidence for a new model of herbicide activity. Isr J Chem. 1981;21(4):348–54.
[36] Nonella M, Schulten K. Molecular dynamics simulation of electron transfer in proteins: theory and application to QA QB transfer in the photosynthetic reaction center. J Phys Chem. 1991;95(5):2059–67.
[37] M?ller MG, Griebenow K, Holzwarth AR. Primary processes in isolated bacterial reaction centers from Rhodobacter sphaeroides studied by picosecond fluorescence kinetics. Chem Phys Lett. 1992;199(5):465–9.