Biopolym. Cell. 1997; 13(6):436-441.
Reviews
Cytoskeleton and translation elongation factors
1Negrutskii B. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Data about possible participation of the eukaryotic elongation factors in the organization and regulation of microtubular and microfilament networks of cellular cytoskeleton are reviewed. Potential role of the factors to coordinate protein syntesis and polymerization/depolymerization of cytoskeleton under different cellular conditions is suggested.

References

[1] Ohta K, Toriyama M, Miyazaki M, Murofushi H, Hosoda S, Endo S, Sakai H. The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem. 1990;265(6):3240-7.
[2] Bell? R, Derancourt J, Poulhe R, Capony JP, Ozon R, Mulner-Lorillon O. A purified complex from Xenopus oocytes contains a p47 protein, an in vivo substrate of MPF, and a p30 protein respectively homologous to elongation factors EF-1 gamma and EF-1 beta. FEBS Lett. 1989;255(1):101-4.
[3] Janssen GM, Morales J, Schipper A, Labb? JC, Mulner-Lorillon O, Bell? R, M?ller W. A major substrate of maturation promoting factor identified as elongation factor 1 beta gamma delta in Xenopus laevis. J Biol Chem. 1991;266(23):14885-8.
[4] Marchesi VT, Ngo N. In vitro assembly of multiprotein complexes containing alpha, beta, and gamma tubulin, heat shock protein HSP70, and elongation factor 1 alpha. Proc Natl Acad Sci U S A. 1993;90(7):3028-32.
[5] Mulner-Lorillon O, Cormier P, Cavadore JC, Morales J, Poulhe R, Bell? R. Phosphorylation of Xenopus elongation factor-1 gamma by cdc2 protein kinase: identification of the phosphorylation site. Exp Cell Res. 1992;202(2):549-51.
[6] Sanders J, Maassen JA, M?ller W. Elongation factor-1 messenger-RNA levels in cultured cells are high compared to tissue and are not drastically affected further by oncogenic transformation. Nucleic Acids Res. 1992;20(22):5907-10.
[7] Krieg PA, Varnum SM, Wormington WM, Melton DA. The mRNA encoding elongation factor 1-alpha (EF-1 alpha) is a major transcript at the midblastula transition in Xenopus. Dev Biol. 1989;133(1):93-100.
[8] Grant AG, Flomen RM, Tizard ML, Grant DA. Differential screening of a human pancreatic adenocarcinoma lambda gt11 expression library has identified increased transcription of elongation factor EF-1 alpha in tumour cells. Int J Cancer. 1992;50(5):740-5.
[9] Cavallius J, Rattan SI, Clark BF. Changes in activity and amount of active elongation factor 1 alpha in aging and immortal human fibroblast cultures. Exp Gerontol. 1986;21(3):149-57.
[10] Shepherd JC, Walldorf U, Hug P, Gehring WJ. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer. Proc Natl Acad Sci U S A. 1989;86(19):7520-1.
[11] Viel A, Dj? MK, Mazabraud A, Denis H, le Maire M. Thesaurin a, the major protein of Xenopus laevis previtellogenic oocytes, present in the 42 S particles, is homologous to elongation factor EF-1 alpha. FEBS Lett. 1987;223(2):232-6.
[12] Mattaj IW, Coppard NJ, Brown RS, Clark BF, De Robertis EM. 42S p48--the most abundant protein in previtellogenic Xenopus oocytes--resembles elongation factor 1 alpha structurally and functionally. EMBO J. 1987;6(8):2409-13.
[13] Coppard NJ, Poulsen K, Madsen HO, Frydenberg J, Clark BF. 42Sp48 in previtellogenic Xenopus oocytes is structurally homologous to EF-1 alpha and may be a stage-specific elongation factor. J Cell Biol. 1991;112(2):237-43.
[14] Deschamps S, Morales J, Mazabraud A, le Maire M, Denis H, Brown DD. Two forms of elongation factor 1 alpha (EF-1 alpha O and 42Sp50), present in oocytes, but absent in somatic cells of Xenopus laevis. J Cell Biol. 1991;114(6):1109-11.
[15] Johnson AD, Krieg PA. A Xenopus laevis gene encoding EF-1 alpha S, the somatic form of elongation factor 1 alpha: sequence, structure, and identification of regulatory elements required for embryonic transcription. Dev Genet. 1995;17(3):280-90.
[16] Tatsuka M, Mitsui H, Wada M, Nagata A, Nojima H, Okayama H. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature. 1992;359(6393):333-6.
[17] Lew Y, Jones DV, Mars WM, Evans D, Byrd D, Frazier ML. Expression of elongation factor-1 gamma-related sequence in human pancreatic cancer. Pancreas. 1992;7(2):144-52.
[18] Mimori K, Mori M, Tanaka S, Akiyoshi T, Sugimachi K. The overexpression of elongation factor 1 gamma mRNA in gastric carcinoma. Cancer. 1995;75(6 Suppl):1446-9.
[19] Mimori K, Mori M, Inoue H, Ueo H, Mafune K, Akiyoshi T, Sugimachi K. Elongation factor 1 gamma mRNA expression in oesophageal carcinoma. Gut. 1996;38(1):66-70.
[20] Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995;20(5):169-70.
[21] Nyg?rd O, Nilsson L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. Eur J Biochem. 1990;191(1):1-17.
[22] Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992;56(2):291-315.
[23] Triana FJ, Nierhaus KH, Ziehler J. Chakraburtty K. Defining the functions of EF-3, a unique elongation factor in low fungi. The translation apparatus. Eds K. Nierhaus et al. New York: Plenum press, 1993: 327-38.
[24] Shiina N, Gotoh Y, Nishida E. Microtubule-severing activity in M phase. Trends Cell Biol. 1995;5(7):283-6.
[25] Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E. Microtubule severing by elongation factor 1 alpha. Science. 1994;266(5183):282-5.
[26] Durso NA, Cyr RJ. A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell. 1994;6(6):893-905.
[27] Janssen GM, M?ller W. Elongation factor 1 beta gamma from Artemia. Purification and properties of its subunits. Eur J Biochem. 1988;171(1-2):119-29.
[28] Demma M, Warren V, Hock R, Dharmawardhane S, Condeelis J. Isolation of an abundant 50,000-dalton actin filament bundling protein from Dictyostelium amoebae. J Biol Chem. 1990;265(4):2286-91.
[29] Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[30] Itano N, Hatano S. F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules. Cell Motil Cytoskeleton. 1991;19(4):244-54.
[31] Numata O. Multifunctional proteins in Tetrahymena: 14-nm filament protein/citrate synthase and translation elongation factor-1 alpha. Int Rev Cytol. 1996;164:1-35.
[32] Takeda T, Kurasawa Y, Watanabe Y, Numata O. Polymerization of highly purified Tetrahymena 14-nm filament protein/citrate synthase into filaments and its possible role in regulation of enzymatic activity. J Biochem. 1995;117(4):869-74.
[33] Kurasawa Y, Hanyu K, Watanabe Y, Numata O. F-actin bundling activity of Tetrahymena elongation factor 1 alpha is regulated by Ca2+/calmodulin. J Biochem. 1996;119(4):791-8.
[34] Kaur KJ, Ruben L. Protein translation elongation factor-1 alpha from Trypanosoma brucei binds calmodulin. J Biol Chem. 1994;269(37):23045-50.
[35] Hasegawa T, Takahashi S, Hayashi H, Hatano S. Fragmin: a calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry. 1980;19(12):2677-83.
[36] missed
[37] missed
[38] Giffard RG, Weeds AG, Spudich JA. Ca2+-dependent binding of severin to actin: a one-to-one complex is formed. J Cell Biol. 1984;98(5):1796-803.
[39] Yin HL, Stossel TP. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979;281(5732):583-6.
[40] Bretscher A, Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980;20(3):839-47.
[41] Burridge K, Feramisco JR. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981;294(5841):565-7.
[42] Edmonds BT, Murray J, Condeelis J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1 alpha. J Biol Chem. 1995;270(25):15222-30.
[43] Bassell GJ, Powers CM, Taneja KL, Singer RH. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol. 1994;126(4):863-76.
[44] Dharmawardhane S, Demma M, Yang F, Condeelis J. Compartmentalization and actin binding properties of ABP-50: the elongation factor-1 alpha of Dictyostelium. Cell Motil Cytoskeleton. 1991;20(4):279-88.
[45] Shestakova EA, Motuz LP, Minin AA, Gelfand VI, Gavrilova LP. Some of eukaryotic elongation factor 2 is colocalized with actin microfilament bundles in mouse embryo fibroblasts. Cell Biol Int Rep. 1991;15(1):75-84.
[46] Shestakova EA, Motuz LP, Minin AA, Gavrilova LP. Study of localization of the protein-synthesizing machinery along actin filament bundles. Cell Biol Int. 1993;17(4):409-16.
[47] Shestakova EA, Motuz LP, Gavrilova LP. Co-localization of components of the protein-synthesizing machinery with the cytoskeleton in G0-arrested cells. Cell Biol Int. 1993;17(4):417-24.
[48] Bekta? M, Nurten R, G?rel Z, Sayers Z, Bermek E. Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett. 1994;356(1):89-93.
[49] Yang W, Burkhart W, Cavallius J, Merrick WC, Boss WF. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem. 1993;268(1):392-8.
[50] Venema RC, Peters HI, Traugh JA. Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. J Biol Chem. 1991;266(18):11993-8.
[51] Venema RC, Peters HI, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991;266(19):12574-80.
[52] Kielbassa K, M?ller HJ, Meyer HE, Marks F, Gschwendt M. Protein kinase C delta-specific phosphorylation of the elongation factor eEF-alpha and an eEF-1 alpha peptide at threonine 431. J Biol Chem. 1995;270(11):6156-62.
[53] Janssen GM, Maessen GD, Amons R, M?ller W. Phosphorylation of elongation factor 1 beta by an endogenous kinase affects its catalytic nucleotide exchange activity. J Biol Chem. 1988;263(23):11063-6.
[54] Chen CJ, Traugh JA. Expression of recombinant elongation factor 1 beta from rabbit in Escherichia coli. Phosphorylation by casein kinase II. Biochim Biophys Acta. 1995;1264(3):303-11.
[55] Palen E, Venema RC, Chang YW, Traugh JA. GDP as a regulator of phosphorylation of elongation factor 1 by casein kinase II. Biochemistry. 1994;33(28):8515-20.
[56] Peters HI, Chang YW, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity. Eur J Biochem. 1995;234(2):550-6.
[57] van Hemert FJ, Amons R, Pluijms WJ, van Ormondt H, M?ller W. The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. EMBO J. 1984;3(5):1109-13.
[58] Coppard NJ, Clark BF, Cramer F. Methylation of elongation factor 1 alpha in mouse 3T3B and 3T3B/SV40 cells. FEBS Lett. 1983;164(2):330-4.
[59] Dever TE, Costello CE, Owens CL, Rosenberry TL, Merrick WC. Location of seven post-translational modifications in rabbit elongation factor 1 alpha including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine. J Biol Chem. 1989;264(34):20518-25.
[60] Riis B, Rattan SI, Clark BF, Merrick WC. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990;15(11):420-4.
[61] Ryazanov AG, Shestakova EA, Natapov PG. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature. 1988;334(6178):170-3.
[62] van Damme HT, Amons R, M?ller W. Identification of the sites in the eukaryotic elongation factor 1 alpha involved in the binding of elongation factor 1 beta and aminoacyl-tRNA. Eur J Biochem. 1992;207(3):1025-34.
[63] Van Duijn B, Inouye K. Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis. Proc Natl Acad Sci U S A. 1991;88(11):4951-5.
[64] Agutter PS. Role of the cytoskeleton in nucleocytoplasmic RNA and protein distributions. Biochem Soc Trans. 1991;19(4):1094-8.
[65] St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995;81(2):161-70.
[66] Biegel D, Pachter JS. mRNA association with the cytoskeletal framework likely represents a physiological binding event. J Cell Biochem. 1992;48(1):98-106.
[67] Hesketh JE, Horne Z, Campbell GP. Immunohistochemical evidence for an association of ribosomes with microfilaments in 3T3 fibroblasts. Cell Biol Int Rep. 1991;15(2):141-50.
[68] Hesketh JE, Pryme IF. Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J. 1991;277 ( Pt 1):1-10.
[69] Litman P, Barg J, Ginzburg I. Microtubules are involved in the localization of tau mRNA in primary neuronal cell cultures. Neuron. 1994;13(6):1463-74.
[70] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[71] Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[72] Negrutskii BS, Deutscher MP. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc Natl Acad Sci U S A. 1992;89(8):3601-4.
[73] Negrutskii BS, Stapulionis R, Deutscher MP. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994;91(3):964-8.
[74] Stapulionis R, Deutscher MP. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995;92(16):7158-61.
[75] Grinstein S, Rotin D, Mason MJ. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989;988(1):73-97.