Biopolym. Cell. 1997; 13(5):372-376.
Structure and Function of Biopolymers
The dielectric friction influence on character of temperature dependence of the rate enzyme reactions
- Ukrainian Transport University
1, Suvorova Str., Kyiv, Ukraine, 01010
Abstract
The evident dependence of dielectric friction coefficient from translational vibrations frequency of dipole and temperature is obtained by the dielectric continuum theory. The dipole is activated enzyme substrate complex model here. !t is found that the anomalous (non Arrhenius) temperature dependence of the rate enzyme reactions can be occurred owing of resonance dissipation energy dipole in dielectric friction presence. The results of the calculations are agree with experiment qualitatively.
Full text: (PDF, in Ukrainian)
References
[1]
Kistiakowsky GB, Lumry R. Anomalous Temperature Effects in the Hydrolysis of Urea by Urease. J Am Chem Soc. 1949;71(6):2006–13.
[2]
Kavanau JL. Enzyme kinetics and the rate of biological processes. J Gen Physiol. 1950;34(2):193-209.
[3]
Maier VP, Tappel AL, Volman DH. Reversible Inactivation of Enzymes at Low Temperatures. Studies of Temperature Dependence of Phosphatase- and Peroxidase-catalyzed Reactions. J Am Chem Soc. 1955;77(5):1278–80.
[4]
Zakim D, Kavecansky J, Scarlata S. Are membrane enzymes regulated by the viscosity of the membrane environment? Biochemistry. 1992;31(46):11589-94.
[5]
Sandermann H Jr. Regulation of membrane enzymes by lipids. Biochim Biophys Acta. 1978;515(3):209-37.
[7]
Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica. 1940;7(4):284–304.
[8]
J?hnig F, Bramhall J. The origin of the break in Arrhenius plots of membrane processes. Biochim Biophys Acta. 1982;690(2):310-3.
[9]
Pollak E. Theory of activated rate processes: A new derivation of Kramers’ expression. J Chem Phys. 1986;85(2):865-7.
[10]
Dekker N. Kramers' activation rate for a sharp edged potential barrier: The double oscillator. Physica. 1986; 136A(1):124-46.
[11]
Graham R. Macroscopic theory of activated decay of metastable states. J Stat Phys. 1990;60(5-6):675–94.
[12]
Gaveau B, Hynes JT, Kapral R, Moreau M. A stochastic theory of chemical reaction rates. II. Applications. J Stat Phys. 1989;56(5-6):895–910.
[13]
Gavish B. The role of geometry and elastic strains in dynamic states of proteins. Biophys Struct Mech. 1977;4(1):37-52.
[14]
Fleming G. R. Chemical applications of ultrafast spectros copy.—New York; Oxford: Univ. press. 367 p.
[15]
Einstein A. Investigations on the theory of the brownian movement. New York: Dover, 1956. 296 p.
[16]
Dote JL, Kivelson D, Schwartz RN. A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids. J Phys Chem. 1981;85(15):2169–80.
[17]
Alavi DS, Waldeck DH. A test of hydrodynamics in binary solvent systems: rotational diffusion studies of oxazine 118. J Phys Chem. 1991;95(12):4848–52.
[18]
Nee T-W, Zwanzig R. Theory of dielectric relaxation in polar liquids. J Chem Phys. 1970;52(12):6353-63.
[19]
Hubbard JB, Wolynes PG. Dielectric friction and molecular reorientation. J Chem Phys. 1978;69(3):998-1006.
[20]
Hubbard JB. Friction on a rotating dipole. J Chem Phys. 1978;69(3):1007-9.
[21]
Nowak E. Dielectric friction and energy dissipation in polar fluidsa). J Chem Phys. 1983;79(2):976-81.
[22]
Wolynes PG. Dynamics of Electrolyte Solutions. Ann Rev Phys Chem. 1980;31(1):345–76.
[23]
Madden P, Kivelson D. Dielectric friction and molecular reorientation. J Phys Chem. 1982;86(21):4244–56.
[24]
Alavi DS, Waldeck DH. Rotational dielectric friction on a generalized charge distribution. J Chem Phys. 1991;94(9):6196-202.
[25]
Jackson JD. Classical electrodynamics. New York: John Willey, 1975. 447 p.
[26]
Kaatze U, Pottel R. Dielectric properties of organic solute/water mixtures. Hydrophobic hydration and relaxation. J Mol Liq. 1992;52:181–210.
[27]
Frenkel YaI. Kinetic Theory of Liquids. L.: Nauka, 1975; 592 p.
[28]
Demchenko AP. Luminescence and dynamics of proteins structure. Kyiv, Naukova Dumka, 1988; 280 p
[29]
Karplus M, McCammon JA. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263-300.
[30]
Kosytskiy MM, Skurskyy SI. The dynamic mechanism of energy transfer in biomolecular systems. Meet Ukr Biofiz soc (20-24 June): Proc. Kyiv, 1994: 214.
[31]
Danchuk V, Demchenko A, Skursky S, Kositsky N. DynamiÂcal energy transduction mechanism in biocatalytic reactions (computer simulation). 8th Int Congr Quant Chem. (Prague, June 19-23, 1994): Abstr. Prague, 1994: 341.