Biopolym. Cell. 1997; 13(3):239-244.
Viruses and Cell
Detection of classical swine fever virus by reverse transcriptase-polymerase chain reaction and molecular hybridization
1Kirilenko S. D., 2Deriabin O. M., 2Deriabina O. G., 1Kirilenko O. L., 1Cherednik Ju. O., 2Grlshok L. P., 2Shikov O. T.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Veterinary Medicine, NAAS of Ukraine
    30, Donetska Str., Kyiv, Ukraine, 03151

Abstract

Oligonucleotide primers flanking 846 bp fragment of gp5l-55 structural gene of classical swine fever virus (CSFV) have been used in polymerase chain reaction for detection of genomic RNA of CSFV in pathological specimens taken from animals with different clinical signs and disease running. The possibility of their use in the differentiation of high- and low virulent CSFV isolates and in molecular epidemiologicat investigations is discussed.

References

[1] Horner G. Comparison of an antigen capture enzyme-linked assay with reverse transcription - polymerase chain reaction and cell culture immunoperoxidase tests for the diagnosis of ruminant pestivirus infections. Vet Microbiol. 1995;43(1):75–84.
[2] Moser C, Ruggli M, Tratschin JD, Hofnwnn M. A. Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Immunobiology of viral infections: 3rd Congr. Eur. Soc. Vet. Virol. Interlaken, 1995: 327-330.
[3] Paton DJ, Sands JJ, Lowings JP, Smith JE, Ibata G, Edwards S. A proposed division of the pestivirus genus using monoclonal antibodies, supported by cross-neutralisation assays and genetic sequencing. Vet Res. 1995;26(2):92-109.
[4] Kirilenko SD, Deriabin OM, Kirilenko OL, Deriabina EG, Busol VO. Cloning and overexpression of the part of envelope protein El gene of classical swine fever virus (Strain Shi-Min) in Escherichia coli. Biopolym Cell. 1996; 12(5):93-9.
[5] Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975;98(3):503-17.
[6] Hojman F. A novel electrophoretic strategy allows detection of very low amounts of circular retroviral DNA by PCR. Meth Mol Cell Biology. 1990; 2:66-9.
[7] Rasschaert D. Etude d'un coronavirus, le virus de la gastro­ enteric transmissible du pore; identification des genes struc- turaux et non-structuraux et localization d'un site antigenique majeur sur la sequence de la glycoprotcine de spicule E2 II These de docteur en sciences. Paris: Universite de Paris-Sud., 1988: 18.
[8] Liu S-T, Li S-N, Wang D-C, Chang S-F, Chiang S-C, Ho W-C, et al. Rapid detection of hog cholera virus in tissues by the polymerase chain reaction. J Virol Methods. 1991;35(2):227–36.
[9] Semenikhin AL, Vishnyakov IF. Status and prospects of action against classical swine fever. Materials, scientific. Scient. Conf. VNIIVViM. Pokrov, 1995: 29-35.
[10] Afshar A, Dulac GC, Bouffard A. Application of peroxidase labelled antibody assays for detection of porcine IgG antibodies to hog cholera and bovine viral diarrhea viruses. J Virol Methods. 1989;23(3):253-61.
[11] Katz JB, Ridpath JF, Bolin SR. Presumptive diagnostic differentiation of hog cholera virus from bovine viral diarrhea and border disease viruses by using a cDNA nested-amplification approach. J Clin Microbiol. 1993;31(3):565-8.
[12] Sullivan DG, Akkina RK. A nested polymerase chain reaction assay to differentiate pestiviruses. Virus Res. 1995;38(2-3):231-9.
[13] Vilcek S, Herring AJ, Herring JA, Nettleton PF, Lowings JP, Paton DJ. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol. 1994;136(3-4):309-23.
[14] Harding M, Lutze-Wallace C, Prud'Homme I, Zhong X, Rola J. Reverse transcriptase-PCR assay for detection of hog cholera virus. J Clin Microbiol. 1994;32(10):2600-2.