Biopolym. Cell. 1996; 12(6):63-68.
Molecular-biology approaches to detection of Philadelphia chromosome in patients with leukemia
1Telegeev G. D., 1Dybkov M. V., 1Bozhko M. V., 2Tretiak N. M., 1Maliuta S. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Kyiv Institute of Hematology and Blood Transfusion, MoH Ukraine
    street. Maxim Berlinskogo, 12., Kyiv, Ukraine, 252060

Abstract

The data on Philadelphia chromosome detection in patients with CML and ALL are presented. Two approaches were applied: .5' and 3' bcr genomic probes were used; two steps PCR with specific primers was employed. The latter is more preferable for clinic use. Some issues of Ph' leukemias etiology are also discussed.

References

[1] Weinberg RA. Oncogenes and the molecular origins of cancer. New York: Cold Spring Harbor Lab., 1989; 367 p.
[2] Weinberg RA. Tumor suppressor genes. Science. 1991;254(5035):1138-46.
[3] Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960; 132:1497-9.
[4] Mills KI. The BCR. ABL gene in chronic myeloleukemia. Gematol Transfuziol. 1993;38(3):3-7.
[5] Maurer J, Janssen JW, Thiel E, van Denderen J, Ludwig WD, Aydemir U, Heinze B, Fonatsch C, Harbott J, Reiter A, et al. Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet. 1991;337(8749):1055-8.
[6] Propp S, Lizzi FA. Philadelphia chromosome in acute lymphocytic leukemia. Blood. 1970;36(3):353-60.
[7] Priest JR, Robison LL, McKenna RW, Lindquist LL, Warkentin PI, LeBien TW, Woods WG, Kersey JH, Coccia PF, Nesbit ME Jr. Philadelphia chromosome positive childhood acute lymphoblastic leukemia. Blood. 1980;56(1):15-22.
[8] Renshaw MW, McWhirter JR, Wang JY. The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation. Mol Cell Biol. 1995;15(3):1286-93.
[9] Hooberman AL, Carrino JJ, Leibowitz D, Rowley JD, Le Beau MM, Arlin ZA, Westbrook CA. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1989;86(11):4259-63.
[10] Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci U S A. 1988;85(15):5698-702.
[11] Daley GQ, Ben-Neriah Y. Implicating the bcr/abl gene in the pathogenesis of Philadelphia chromosome-positive human leukemia. Adv Cancer Res. 1991;57:151-84.
[12] Chan LC, Karhi KK, Rayter SI, Heisterkamp N, Eridani S, Powles R, Lawler SD, Groffen J, Foulkes JG, Greaves MF, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature. 1987 Feb 12-18;325(6105):635-7.
[13] Mathew CG. The isolation of high molecular weight eukaryotic DNA. Methods Mol Biol. 1985;2:31-4.
[14] Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.
[15] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab, 1982; 545 p.
[16] Telegeev GD, Dybkov MV, Karpenko OI, Cherepenko HI. Molecular basis of Ph+ leukemia and finding the way to treat them. Biopolym Cell. 1994; 10(5):78-92.
[17] *Turkina AG, Domninski? DA, Pokrovskaia ES, Babushkina EA, Moiseenkova IN, Zakharova AV, Arkhipova NV, Grineva NI, Khoroshko ND. An evaluation of the prognostic significance of the structure of the chromosomal translocation t (9; 22) locus in chronic myeloleukemia. Gematol Transfuziol. 1993;38(3):8-11.
[18] Ayscue LH, Ross DW, Ozer H, Rao K, Gulley ML, Dent GA. Bcr/abl recombinant DNA analysis versus karyotype in the diagnosis and therapeutic monitoring of chronic myeloid leukemia. Am J Clin Pathol. 1990;94(4):404-9.
[19] Dominski? DA, Pokrovskaia ES, Babushkina EA, Turkina AG, Grineva NI. Use of polymerase chain reaction for determining bcr/abl mRNA in human chronic myeloleukemia. Genetika. 1994;30(12):1636-9.
[20] Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, Gewirtz AM, Calabretta B. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science. 1991;253(5019):562-5.
[21] Zhenodarova SM. Synthetic endoribonucleases. Mol Biol (Mosk). 1993;27(2):245-68.
[22] McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 1993;12(4):1533-46.
[23] Goga A, McLaughlin J, Pendergast AM, Parmar K, Muller A, Rosenberg N, Witte ON. Oncogenic activation of c-ABL by mutation within its last exon. Mol Cell Biol. 1993;13(8):4967-75.
[24] Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995;15(10):5531-41.
[25] Welch PJ, Wang JY. Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms. Mol Cell Biol. 1995;15(10):5542-51.
[26] Ron D, Zannini M, Lewis M, Wickner RB, Hunt LT, Graziani G, Tronick SR, Aaronson SA, Eva A. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol. 1991;3(4):372-9.