Biopolym. Cell. 1996; 12(4):38-48.
1H-NMR investigation of the self-association of non-complementary deoxytetranucleotides of different base sequences in aqueous solution
1Veselkov A. N., 1Baranovsky S. F., 1Petrenko N. V., 1Osetrov S. G., 1Veselkov D. A., 1Djimant L. N., 2Tucker A., 2Parkes H., 2Davies D.
  1. Sevastopol National Technical University
    33, Universytetska Str., Sevastopol, Ukraine, 99053
  2. Birkbeck, University of London
    Malet Str., Bloomsbury, London WC1E 7HX, UK

Abstract

Self-association of deoxytetraribonucleosidetriphosphates 5'-d(CGAA), S'-d(AAGC), S'-(CTGA), 5'-d(GAAG) in aqueous solution have been studied by one-dimensional and two-dimensional 1H-NMR spectroscopy (500 and 600 MHz). Two-dimensional homowdear PMR spectroscopy (2D-TOCSYand 2D-NOESY) was used for complete assignments of tetranucleotides proton signals. Concentration and temperature dependences of non-exchangeable proton chemical shifts have been measured. Experimental results have been analyzed using dimer model of molecules association. Equilibrium association constants, values of limiting proton chemical shifts of tetranucleotides in the monomer and dimer states, ther-modynamic parameters ΔH, AΔS of the reaction of molecules dimerization have been determined. Comparative analysis of the self-association characteristics for non-complementary deoxytetranucleotides of different base sequences has been made.

References

[1] Lewin B. Genes. (2nd Edition). New York, John Wiley & Sons, 1985; 734 p.
[2] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[3] Veselkov AN, Moroshkin VA, Poliakova ID, Shpungin IL, Frisman ZV. [Conformation of the denatured DNA molecule in solutions of different ionic strengths]. Mol Biol (Mosk). 1976;10(5):1050-60.
[4] Rill RL, Hecker KH. Sequence-specific actinomycin D binding to single-stranded DNA inhibits HIV reverse transcriptase and other polymerases. Biochemistry. 1996;35(11):3525-33.
[5] Graves DE. Sequence selective binding of actinomycin D to duplex and single-strand DNA, Book of abstracts. Workshop on DNA-drug interactions (Madrid, Nov., 15-17). Madrid, 1993: 39.
[6] Davies DB, Djimant LN, Veselkov AN. 1 H NMR structural analysis of the interactions of proflavine with self-complementary deoxytetranucleosides of different base sequence. Nucleosides and Nucleotides. 1994;13(1-3):637–55.
[7] Vaselkov AN, Djumant LN, Bolotin PA, Baranovsky SF, Parkes HG, Davies DB. Investigation of interaction of ethidium bromidewith tetradeoxyribonucleotide 5'-d(CpCpGpC) by 1H NMR spectroscopy. Mol Biol (Mosk). 1995; 29(2):326-38.
[8] Rye HS, Glazer AN. Interaction of dimeric intercalating dyes with single-stranded DNA. Nucleic Acids Res. 1995;23(7):1215-22.
[9] Bailey SA, Graves DE, Rill R, Marsch G. Influence of DNA base sequence on the binding energetics of actinomycin D. Biochemistry. 1993;32(22):5881-7.
[10] Bailey SA, Graves DE, Rill R. Binding of actinomycin D to the T(G)nT motif of double-stranded DNA: determination of the guanine requirement in nonclassical, non-GpC binding sites. Biochemistry. 1994;33(38):11493-500.
[11] Veselkov AN, Djimant LN, Davies D, Parkes H, Shipp D. 1D- and 2D-1H NMR investigation of self-association of deoxytetraribonucleoside triphosphates of different base sequence in aqueous solution. Biopolym Cell. 1991; 7(5):15-22.
[12] Veselkov AN, D?vis D, Dymant LN, Parkes Kh. [Study of the self-association of deoxytetraribonucleoside triphosphate molecules d(ApGpCpT) in aqueous solution by one-dimensional and two- dimensional (1)H NMR spectroscopy]. Biofizika. 1993;38(4):627-35. Russian.
[13] Veselkov AN, Dymant LN, Kodintsev VV, Lisiutin VA, Parkes H, Davies D. [Self-association of deoxytetraribonucleoside triphosphates d(TpGpCpA) in an aqueous solution by 1H NMR spectroscopy]. Biofizika. 1995;40(2):283-92.
[14] Reid BR. Sequence-specific assignments and their use in NMR studies of DNA structure. Q Rev Biophys. 1987;20(1-2):1-34.
[15] Wijmenga SS, Mooten MW, Hilbers CW. NMR of nucleic acids: from spectrum to structure. NMR of macromolecules: A practical approach. London: Oxf. Univ. press, 1993: 217 p.
[16] Hirao I, Kawai G, Yoshizawa S, Nishimura Y, Ishido Y, Watanabe K, Miura K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994;22(4):576-82.
[17] Freier SM, Albergo DD, Turner DH. Solvent effects on the dynamics of (dG-dC)3. Biopolymers. 1983;22(4):1107-31.
[18] Veselkov AN, Djimant LN, Karawajew LS, Kulikov EL. Investigation of the aggregation of acridine dyes in aqueous solution by NMR. Stud biophys. 1985. 106(3): 171-80.
[19] Kollman PA, Weiner PK, Dearing A. Studies of nucleotide conformations and interactions. The relative stabilities of double-helical B-DNA sequence isomers. Biopolymers. 1981;20(12):2583-621.
[20] Marky LA, Breslauer KJ. Calorimetric determination of base-stacking enthalpies in double-helical DNA molecules. Biopolymers. 1982;21(11):2185-94.
[21] Blommers MJ, Haasnoot CA, Walters JA, van der Marel GA, van Boom JH, Hilbers CW. Solution structure of the 3'-5' cyclic dinucleotide d(pApA). A combined NMR, UV melting, and molecular mechanics study. Biochemistry. 1988;27(22):8361-9.
[22] Petersheim M, Turner DH. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983;22(2):256-63.
[23] Albergo DD, Marky LA, Breslauer KJ, Turner DH. Thermodynamics of (dG--dC)3 double-helix formation in water and deuterium oxide. Biochemistry. 1981;20(6):1409-13.
[24] Dymant LN, Veselkov AN. Proton magnetic resonance study of autoassociation of diribonucleosidmonophasphates GpG and GpC in water solution. Biofizika. 1988; 33(4):728.