Biopolym. Cell. 1996; 12(2):42-46.
Cell Biology
Genetic transformation of potato (Solanum tuberosum L.) using a binary Agrobacterium tumefaciens vector with patatin promoter class I
1Kovalenko P. G., 1Yefimenko I. M., 1Schuman N. V., 1Medvedeva T. V., 2Gazaryan K. G., 1Galkin A. P.
  1. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Kanamycin resistant plants of S. tuberosum L. (in vitro-grown) cv. Zarevo were obtained from tlie cocultivated microtubers with A. tumefaciens. A disarmed binary vector systems containing the neomycin phosphotransferase (NPTII) gene as selectable marker and chloramphenicol acetyltransferase (CAT), as a reporter gene, under control of new patatin promoter class I were utilized. In vitro grown minitubers discs were used as sources of explants to produce transgenic plants on selective medium containing 100 fig/1 kanamycin and CAT enzyme activities were detected.

References

[1] Ooms G, Karp A, Roberts J. From tumour to tuber; tumour cell characteristics and chromosome numbers of crown gall-derived tetraploid potato plants (Solanum tuberosum cv. 'Maris Bard'). Theor Appl Genet. 1983;66(2):169-72.
[2] Chung SH, Sims WS. Transformation of potato (Solarium tuberosum L.) tuber cells with Agrobacterium tumefaciens and Ti plasmid DNA. Korean Biochem J. 1987; 20: 389-98.
[3] Sheerman S, Bevan MW. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Rep. 1988;7(1):13-6.
[4] Park WD. Molecular approaches to tuberization in potato. The Mol. and Cell. Biol, of the Potato. Eds M. E. Vayda, W. D. Park: A. B. Int., 1990: 43-57.
[5] Twell D, Ooms G. Structural diversity of the patatin gene family in potato cv. Desiree. Mol Gen Genet. 1988;212(2):325-36.
[6] Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989;8(1):23-9.
[7] Paiva E, Lister RM, Park WD. Induction and accumulation of major tuber proteins of potato in stems and petioles. Plant Physiol. 1983;71(1):161-8.
[8] Wenzler HC, Mignery GA, Fisher LM, Park WD. Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: High-level expression in tubers and sucrose-inducible expression in cultured leaf and stem explants. Plant Mol Biol. 1989;12(1):41-50.
[9] Bevan M, Barker R, Goldsbrough A, Jarvis M, Kavanagh T, Iturriaga G. The structure and transcription start site of a major potato tuber protein gene. Nucleic Acids Res. 1986;14(11):4625-38.
[10] K?ster-T?pfer M, Frommer WB, Rocha-Sosa M, Rosahl S, Schell J, Willmitzer L. A class II patatin promoter is under developmental control in both transgenic potato and tobacco plants. Mol Gen Genet. 1989;219(3):390-6.
[11] Domansky NN, Yefimenko IM, Galkin AP. Cloning of the tuber-specific promoter of a class I patatin gene. Doklady Akad Nauk Ukrainy. 1992;(10):151-4.
[12] Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984;12(22):8711-21.
[13] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
[14] Gorman CM, Moffat LF, Howard BH. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982;2(9):1044-51.
[15] Yefimenko IM, Medvedeva TV, Kovalenko PG, Gazaryan KG, Galkin AP. Organ-specific gene expression in transgenic potato: the cloning a new promoter of a class I patatin gene. Biopolym Cell. 1995; 11(6):96-103.