Biopolym. Cell. 1995; 11(2):15-28.
Biosensors based on microorganism cells
1Korpan Ya. I., 2Gonchar M. V., 3Starodub N. F., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Division of Cell Regulatory Systems of O.V. Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005
  3. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601

Abstract

This review summerizes the data from literature in the design of laboratory and commercial prototypes of .biosensors based on living cells of microorganisms. The potential benefis and problems of the development of this field of analytical biotechnology are discussed

References

[1] Clark LC Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29-45.
[2] Lowe CR. As introduction to the concepts and technology of biosensors. Biosensors. 1985;1(1):3-16.
[3] Schramm W, Yang T, Midgley AR. The commercialization of biosensors. Med Dev Diagnostics Ind. 1987; 52-7.
[4] Karube I, Tamiya E, Sode K. Current trands in microbiosensor development. Swiss Biotech. 1989; 7(4): 25-26, 28-32.
[5] Rawson DM. Whole cell biosensors. Int Ind Biotechnol. 1988; 8(2):18-22.
[6] Riedel K, Renneberg R, Wollenberger U, Kaiser G, Scheller FW. Microbial sensors: Fundamentals and application for process control. J Chem Technol Biotechno.; 2007;44(2):85–106.
[7] Schmid RD, Karube I. Biosensors and «bioelectronics». Biotechnology. Eds. H. J. Rehm, G. Reed. Weinheim: VCH Verlagsgesselshaft, 1988: 317-65.
[8] Turner APF, Karube I, Wilson GS. Biosensors. Fundamentals and application. Oxford: Univ. press, 1987: 13-29.
[9] Hall EAH. Biosensors. Melksham: Redwood press Ltd., 1990: 193-215.
[10] Karube I, Suzuki S, Okada T, Hikuma M. Microbial sensors for volatile compounds. Biochimie. 1980;62(8-9):567-73.
[11] Renneberg R, Riedel K, Liebs P, Scheller F. Microbial and hybrid sensors for determination of α-amylase activity. Anal Lett. 1984;17(5):349–58.
[12] Renneberg R, Riedel K, Scheller F. Microbial sensor for aspartame. Appl Microbiol Biotechnol. 1985;21(3-4):180–1.
[13] Vincké BJ, Devleeschouwer MJ, Patriarche GJ. Electrodes Potentiometriques Et Amperometriques a Levures Permeabilisees: Determination Du L-Lactate. Anal Lett. 1985;18(5):593–607.
[14] Wollemberger U, Scheller F, Atrat P. Microbial Membrane Electrode for Steroid Assay. Anal Lett. 1980;13(13):1201–10.
[15] Riedel K, Renneberg R, Kuhn M, Scheller F. A fast estimation of biochemical oxygen demand using microbial sensors. Appl Microbiol Biotechnol. 1988;28(3)316-8.
[16] Riedel K, Renneberg R, Liebs P, Kaiser G. Microbial sensors. Stud biophys. 1987; 119(1-3):163-6.
[17] Kulys J, Kadziauskiene K. Yeast BOD sensor. Biotechnol Bioeng. 1980;22(1):221–6.
[18] Zhang X, Wang Z, Lan H. Microbial sensor for the BOD estimation. Chem Abstr 1986; 105: 158-286.
[19] Rawson DM, Willmer AJ, Turner AP. Whole-cell biosensors for environmental monitoring. Biosensors. 1989;4(5):299-311.
[20] Karube I, Mitsuda S, Suzuki S. Glucose sensor using immobilized whole cells of Pseudomonas fluorescens. Eur J Appl Microbiol Biotechnol. 1979;7(4):343–50.
[21] Mascini M, Memoli A. Comparison of microbial sensors based on amperometric and potentiometric electrodes. Anal Chim Acta. 1986;182:113–22.
[22] Hikuma M, Obana H, Yasuda T, Karube I, Suzuki S. Amperometric determination of total assimilable sugars in fermentation broths with use of immobilized whole cells. Enzyme Microb Technol. 1980;2(3):234–8.
[23] Riedel K, Scheller F. Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst. 1987;112(3):341-2.
[24] Pat. N 228.826 (Germany) Verfahren zur bestimmung von langkettigen n-alkanen, fetisu en ihid alkohulen. R. Renneberg, P. Riege, K. Schwandt et al. 1985.
[25] Riedel K, Renneberg R, Kleine R, Kuger M, Scheller F. A microbial sensor for peptides. Appl Microbiol Biotechnol. 1988;28(3)272-5.
[26] Diviés C. Remarks on ethanol oxidation by an "Acetobacter xylinum" microbial electrode (author's transl). Ann Microbiol (Paris). 1975;126(2):175-86.
[27] Hikuma M, Kubo T, Yasuda T, Karube I, Suzuki S. Microbial electrode sensor for alcohols. Biotechnol Bioeng. 1979;21(10):1845–53.
[28] Hikuma M, Kubo T, Yasuda T, Karube I, Suzuki S. Ammonia electrode with immobilized nitrifying bacteria. Anal Chem. 1980;52(7):1020–4.
[29] Okada T, Karube I, Suzuki S. Ammonium ion sensor based on immobilized nitrifying bacteria and a cation-exchange membrane. Anal Chim Acta. 1982;135(1):159–63.
[30] Riedel K, Huth J, Kuehn M, Liebs P. Amperometric determination of ammonium ions with a microbial sensor. J Chem Technol Biotechnol. 1990;47(2):109-16.
[31] Kubo I, Karube I, Suzuki S. Amperometric determination of creatinine with a biosensor based on immobilized creatininase and nitrifying bacteria. Anal Chim Acta. 1983;151:371–6.
[32] Racek J, Musil J. Biosensor for lactate determination in biological fluids. I. Construction and properties of the biosensor. Clin Chim Acta. 1987;162(2):129–39.
[33] Okada T, Karube I, Suzuki S. Microbial sensor system which usesMethylomonas sp. for the determination of methane. Appl Microbiol Biotechnol. 1981;12(2):102–6.
[34] Karube I, Nakahara T, Matsunaga T, Suzuki S. Salmonella electrode for screening mutagens. Anal Chem. 1982;54(11):1725-7.
[35] Karube I, Nakahara T, Matsunaga T, Suzuki S. Measurements of mutagens by microbial sensor. Chem Abstr.1983; 99: 33955.
[36] Okada T, Karube I, Suzuki S. NO(2) Sensor which uses immobilized nitrite oxidizing bacteria. Biotechnol Bioeng. 1983;25(6):1641-51.
[37] Karube I, Matsunaga T, Suzuki S. Microbioassay of nystatin with a yeast electrode. Anal Chim Acta. 1979;109(1):39–44.
[38] Okada T, Karube I, Suzuki S. Hybrid urea sensor using nitrifying bacteria. Eur J Appl Microbiol Biotechnol1982;14(3):149–54.
[39] Gamati S, Luong JH, Mulchandani A. A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosens Bioelectron. 1991;6(2):125-31.
[40] Vincke B, Devleeschouwer MJ, Patriarche GJ. Bacterial electrode for the analytical use of the L-tryptophane oxidative metabolism of Pseudomonas fluoresces. Pharm Belg. 1985; 40: 357-365.
[41] Neujahr HY, Kjellun KG. Bioprobe electrode for phenol. Biotechnol Bioeng. 1979;21(4):671–8.
[42] Neujahr HY. Determination of phenol and catechol concentrations with oxygen probes coated with immobilized enzymes or immobilized cells. Appl Biochem Biotechnol. 1982;7(1-2):107-11.
[43] Matsunaga T, Suzuki T, Tomoda R. Photomicrobial sensors for selective determination of phosphate. Enzyme Microb Technol. 1984;6(8):355–8.
[44] Wollenberger U, Scheller F, Atrat P. Microbial Membrane Electrode for the Determination of Cholesterol. Anal Lett. 1980;13(10):825–36.
[45] Simpson DL, Kobos RK. Potentiometric microbiological assay of gentamicin, streptomycin, and neomycin with a carbon dioxide gas-sensing electrode. Anal Chem. 1983;55(12):1974-7.
[46] Corcoran CA, Kobos RK. Selectivity Enhancement of a Bacterial Arginine Electrode. Anal Lett. 1983;16(16):1291–302.
[47] Rechnitz GA, Kobos RK, Riechel SJ, Gebauer CR. A bio-selective membrane electrode prepared with living bacterial cells. Anal Chim Acta. 1977;94(2):357-65.
[48] Vincke BJ, Devleeschouwer MJ, Patriarche G. Dosage de I'asparagine a I'aide d'une electrode baeterienne. J Pharm Belg. 1983; 38:225-9.
[49] Kobos RK, Rechnitz GA. Regenerable Bacterial Membrane Electrode for L-Aspartate. Anal Lett. 1977;10(10):751–8.
[50] Hikuma M, Obana H, Yasuda T, Karube I, Suzuki S. A potentiometric microbial sensor based on immobilized escherichia coli for glutamic acid. Anal Chim Acta. 1980;116(1):61–7.
[51] Rechnitz GA, Riechel TL, Kobos RK, Meyerhoff ME. Glutamine-selective membrane electrode that uses living bacterial cells. Science. 1978;199(4327):440-1.
[52] Walters RR, Moriarty BE, Buck RP. Pseudomonas bacterial electrode for determination of L-histidine. Anal Chem. 1980;52(11):1680-4.
[53] Park J-K, Kim H-S. A new biosensor for specific determination of glucose or fructose using an oxidoreductase ofZymomonas mobilis. Biotechnol Bioeng. 1990;36(7):744–9.
[54] Kitagawa Y, Tamiya E, Karube I. Microbial-Fet Alcohol Sensor. Anal Lett. 1987;20(1):81–96.
[55] Vincké BJ, Devleeschouwer MJ, Patriarche. GJ. Electrodes Potentiometriques Et Amperometriques a Levures Permeabilisees: Determination Du L-Lactate. Anal Lett. 1985;18(5):593–607.
[56] Karube I, Suzuki S. Amperometric and Potentiometric Determinations with Immobilized Enzymes and Microorganisms. Ion-Selective Electrode Reviews. 1984;15–58.
[57] Schär HP, Ghisalba O. Hyphomicrobium bacterial electrode for determination of monomethyl sulfate. Biotechnol Bioeng. 1985;27(6):897-901.
[58] Matsunaga T, Karube I, Suzuki S. A specific microbial sensor for formic acid. Eur J Appl Microbiol Biotechnol. 1980;10(3):235–43.
[59] Ho MYK, Rechnitz GA. Potentiometric system for selective formate measurement and improvement of response characteristics by permeation of cells. Biotechnol Bioeng. 1985;27(12):1634–9.
[60] Riechel T., Rechnitz G. Hybrid bacterial and enzyme membrane electrode with nicotinamide adenine dinucleotide response. J Memb Sci. 1978;4:243–50.
[61] Matsunaga T, Karube I, Suzuki S. Rapid determination of nicotinic acid by immobilized lactobacillus arabinosus. Anal Chim Acta. 1978;99(2):233–9.
[62] Vincke BJ, Devleeschouwer MJ, Dony J, Patriarche GJ. Analytical determination of nicotinamide using bacterial electrodes. Int J Pharm. 1984;21(3):265–75.
[63] Kobos RK, Rice DJ, Flournoy DS. Bacterial membrane electrode for the determination of nitrate. Anal Chem. 1979;51(8):1122–5.
[64] Kobos RK, Pyon HY. Application of microbial cells as multistep catalysts in potentiometric biosensing electrodes. Biotechnol Bioeng. 1981;23(3):627–33.
[65] Di Paolantonia C., Rechnitz G. Stabilized bacteria-based potentiometric electrode for pyruvate. Anal Chim Acta. 1983;148:1–12.
[66] Kawashima T, Tomida K, Tominaga N, Kobayashi T, Onishi H. A microbial sensor for uric acid. Chem Lett.1984;(5):653–6.
[67] Vincke BJ, Devleeschouwer MJ, Patriarche GJ. Contribution au Developpement d'Un Nouveau Modele d'Electrode: L'Electrode Bacterienne. Anal Lett. 1983; 16(9):673-84.
[68] Di Paolantonio CL, Arnold MA, Rechnttz GA. Serine-selective membrane probe based on immobilized anaerobic bacteria and a potentiometric ammonia gas sensor. Anal Chim Acta. 1981;128:121–7.
[69] Kobos RK. Preliminary Studies of a Bacterial Sulfate Electrode. Anal Lett. 1986;19(3-4):353–62.
[70] Matsunaga T, Tomoda R, Matsuda H. Photomicrobial electrode for selective determination of sulphide. Appl Microbiol Biotechnol. 1984;19(6):404–8.
[71] Di Paolantonio CL, Rechnitz GA. Induced bacterial electrode for the potentiometric measurement of tyrosine. Anal Chim Acta. 1982;141:1–13.
[72] Matsumoto K, Seijo H, Watanabe T, Karube I, Satoh I, Suzuki S. Immobilized whole cell-based flow-type sensor for cephalosporins. Anal Chim Acta. 1979;105:429–32. :
[73] Jensen MA, Rechnitz GA. Bacterial membrane electrode for l-cysteine. Anal Chim Acta. 1978;101(1):125–30.
[74] Jirku V. Energy status of starving yeast cells immobilized by covalent linkage. Biotechnol Lett. 1989;11(12):881–4.
[75] Griffiths D, Hall G. Biosensors--what real progress is being made? Trends Biotechnol. 1993;11(4):122-30.
[76] Yellow Spring Instrument. Instruction manual Y. S. I. model 23 A, 1975.
[77] Arinbasarova AYu, Koshcheyenko KA. Covalent binding of cells with activated silica gel. Prikl Biokhim Mikrobiol. 1980;16(6):864-57.
[78] A. s. N 1594216 (USSR). Method of preparing immobilized cells having fermentation activity. NA Kudryashov, NM Ageeva, EM Sobolev, VA Tolmachev. Bull. 35, 1990.
[79] Kawabata N, Nishimura S, Yoshimura T. New method of immobilization of microbial cells by capture on the surface of insoluble pyridinium-type resin. Biotechnol Bioeng. 1990;35(10):1000-5.
[80] D’Souza SF. Surface immobilization of food relevant microbial cells through adhesion. Food Biotechnol. 1990;4(1):371–82.
[81] Baulina OI, Iobacova ES, Korzenevskaya TC, Ehvald R. Electrone microscopic study of yeast immobilization on the framework of Wolffia arhia cell walls. Abstr. of 15-th Int. Spec. Symp. on Yeasts. Riga, Sept 30 Oct. 6. 1991: 18.
[82] Starostina NG, Lusta KA, Fikhte BA. Morphological and physiological changes in bacterial cells treated with acrylamide. Eur J Appl Microbiol Biotechnol. 1983;18(5):264–70.
[83] Lusta KA, Starostina NG, Gorkina NB, Fikhte BA, LozinskiÄ­ VI. Immobilization of E. coli cells in polyacrylamide-based microporous cryogels. Prikl Biokhim Mikrobiol. 1988;24(4):504-13.
[84] Chupov VV, Usova AV, Yakovenko NI. Covalent immobilization of cells in polymeric hydrogels. Immobilized cells in biotechnology. Pushchino, 1981;7:4-15.
[85] Lozinskiy VI, Vaynerman YeS, Zubov AI et al. Application cryogels of polyvinyl alcohol in biotechnology. II. Changing the rheology of the gel matrix as a result of the inclusion of the yeast cells. Biotehnologiia. 1990;1:32-6.
[86] Hashimoto S, Furukawa K. Immobilization of activated sludge by PVA-boric acid method. Biotechnol Bioeng. 1987;30(1):52-9.
[87] Tóth D, Tomasovicová D, Gemeiner P, Kurillová L. Metabolic characteristics of bacterial cells entrapped in beaded calcium alginate and/or pectate gels. Folia Microbiol (Praha). 1989;34(6):515-24.
[88] Pat. N 479735b (USA). Microorganism or enzyme immobilization with a mixture of alginate and silica sol. J. Motai et al. 1988.
[89] Fukushima Y, Motai H. Continuous conversion of glutamine to glutamate by immobilized glutaminase-producing yeast. J Ferment Bioeng. 1990;69(3):189–91.
[90] Slibova OI, Nikitin DI, Lozinskiy VI. Oxidation of hydrogen immobilized in silica gel and silica gel cryo cells ligotrofpyh bacteria. Mikrobiologiia. 1988. 57(6):940-4.
[91] Verevkin AN, Zueva NN, Iakovleva VI, Sokolova EN, Golovkina GP. Enzymatic synthesis of L-malic acid from fumaric acid using immobilized Escherichia coli cells. Prikl Biokhim Mikrobiol. 1988;24(1):35-41. PubMed PMID: 3285339.
[92] Cell immobilization possible with chitosan gels. Food Eng. 1988; 60(11):72.
[93] A. s. N 1567026 (USSR). A method for producing "immobilized cells having sorbitol dehydrogenase activity. KA Koscheenko, MV Donova, VV Kovalev, AA Artyukov, RT Ovodova. BI. N 20. 1989.
[94] Fukui S, Sonomoto K, Tanaka A. Entrapment of biocatalysts with photo-cross-linkable resin prepolymers and urethane resin prepolymers. Methods Enzymol. 1987;135:230-52.
[95] Popens N, Laukevics J. Inversion of highly concentrated cucrose solutions by immobilized Saccharomyces cerevisiae cells. Abstr. of 15-th Int. Spec. Symp. on Yeasts. (Riga, Sept 30 Oct. 6). Riga, 1991: 106.
[96] De Alteriis E, Parascandola P, Pecorella MA, Scardi V. Effect of gelatin-immobilization on the catalytic activity of enzymes and microbial cells. Biotechnology Techniques. 1988;2(3):205–10.
[97] Fukui S, Tanaka A. Application of biocatalysts immobilized by prepolymer methods. Immobilized Biocatalysts Saccharomyces Yeasts Wastewater TreamentIn Advances in Biochemical Engineering/Biotechnology 1984;1–33.
[98] Renneberg R, Sonomoto K, Katoh S, Tanaka A. Oxygen diffusivity of synthetic gels derived from prepolymers. Appl Microbiol Biotechnol. 1988;28(1)1-7.
[99] Riedel K, Renneberg R, Liebs P. Biochemical basis of a kinetically controlled microbial sensor. Bioelectrochem Bioenerg. 1988;19(1):137–44.
[100] Clarke DJ, Calder MR, Carr RJ, Blake-Coleman BC, Moody SC, Collinge TA. The development and application of biosensing devices for bioreactor monitoring and control. Biosensors. 1985;1(3):213-320.
[101] Ebersole RC, Foss RP, Ward MD. Piezoelectric cell growth sensor. Biotechnology (N Y). 1991;9(5):450-4.
[102] Kawabata N, Teramoto K. Electrochemical sensor for viable microbial cell concentration based on a functional polymer that captures microorganisms alive. Sens Actuators B Chem. 1993;13(1-3):309–11.
[103] Luong JH, Groom CA, Male KB. The potential role of biosensors in the food and drink industries. Biosens Bioelectron. 1991;6(7):547-54.
[104] Rawson DM, Willmer AJ, Cardosi MF. The development of whole cell biosensors for on-line screening of herbicide pollution of surface waters. Environ Toxicol Water Qual. 1987;2(3):325–40.
[105] Corcoran CA, Kobos RK. Selectivity Enhancement of a Bacterial Arginine Electrode. Anal Lett. 1983;16(16):1291–302.
[106] Korpan IaI, Gonchar MV, Soldatkin AP, Starodub NF, SandrovskiÄ­ AK, SibirnyÄ­ AA, El'skaia AV. Cellular microbiosensors for methanol and ethanol determination on the basis of pH-sensitive field transistors. Ukr Biokhim Zh. 1992;64(3):96-100.
[107] Gonchar MV, Korpan YI, Starodub NF, Sibirny AA. Formaldehyde-induced acidification of the medium by methylotrophic yeast cells and elaboration of cell biosensor based on this phenomenon. Proc r3d Int conf on role of formaldehyde in biological systems. Sopron, 1992: 203-208.
[108] Korpan YI, Soldatkin AP, Starodub NF, El’skaya AV, Gonchar MV, Sibirny AA, et al. Methylotrophic yeast microbiosensor based on ion-sensitive field effect transistors for methanol and ethanol determination. Anal Chim Acta. 1993;271(2):203–8.
[109] Korpan YI, Gonchar MV, Starodub NF, Shul'ga AA, Sibirny AA, El'skaya AV. A cell biosensor specific for formaldehyde based on pH-sensitive transistors coupled to methylotrophic yeast cells with genetically adjusted metabolism. Anal Biochem. 1993;215(2):216-22.