Biopolym. Cell. 1994; 10(5):78-92.
Molecular basis of Ph+ leukemia and finding the way to treat them
1Telegeev G. D., 1Dybkov M. V., 1Karpenko O. I., 1Cherepenko H. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The review summarizes the recent study of genetic changes in stem blood cells leading to chronic myelogenous leukemia (CML) and acute lymphoblastic leukemia (ALL). The main emphasis is made on the description of chimeric BCR-ABL gene resulting from a fusion of two normal genes occurred due to specific chromosome translocation. The rate of products of such a recombinant gene in a malignancy process is discussed. Two strategies in developing CML and ALL treatment are pointed. One of them concerns the possibility to restore changed cell phenotype using antisense DNA and ribozymes attacking recombinant gene messenger and thereby blocking this gene expression. The other is directed to the specific killing of the changed cells using chemotherapeutic drugs. On this way the problem of multidrug resistance typical for malignant cells is briefly summarized.

References

[1] Ganul VL, Kindzelsky LN, Fedorenko ZP et al. Results of oncology, X-ray and radiological services of the Ukrainian SSR in 1987, 1988 and 1989. Kiev, 1990, 98 p.
[2] Ivanov EP, Tolochko G, Lazarev VS, Shuvaeva L. Child leukaemia after Chernobyl. Nature. 1993;365(6448):702.
[3] Kiselev FL, Pavlish OA, Tatosyan AG Molecular basis of carcinogenesis in humans. M .: Meditsine, 1990. 320 p.
[4] Weinberg RA. Oncogenes and the molecular origins of cancer. New York : Cold Spring Harbor Lab., 1989. 367 p.
[5] Chinenov IuB. Viral transcription trans-activators. Biokhimiia. 1994;59(2):163-92.
[6] Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell. 1991;65(7):1097-8.
[7] Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124(1-2):1-6.
[8] Sawyers CL, Denny CT, Witte ON. Leukemia and the disruption of normal hematopoiesis. Cell. 1991;64(2):337-50.
[9] Helm SV, Mietelman F. Cancer cytogenetics. New York: Alan R. Liss. Inc., 1987. 309 p.
[10] Gale RP, Grosveld G, Canaani E, Goldman JM. Chronic myelogenous leukemia: biology and therapy. Leukemia. 1993;7(4):653-8.
[11] Cline MJ. The molecular basis of leukemia. N Engl J Med. 1994;330(5):328-36.
[12] Butenko ZA. Modern approaches to the molecular diagnosis of leukemia. Eksp Onkol. 1988;10(3):3-9.
[13] Yavorkovsky LI, Yavorkovsky LL, Udris OYu. The value of molecular rearrangements in Ph chromosome for the clinical course of chronic myeloid leukemia. Modern approaches to molecular diagnosis of leukemia. 1992; 14, 3: 3-7.
[14] Mills KI. The BCR/ABL gene in chronic myeloleukemia. Gematol Transfuziol. 1993;38(3):3-7.
[15] Lazaris-Karatzas A, Montine KS, Sonenberg N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5' cap. Nature. 1990;345(6275):544-7.
[16] Tatsuki M. Factors determining the sensitivity of cells to malignancy. Saysin Igaku. 1993; 48(3):46-55.
[17] Nowell PC, Hungerford DA, A minute chromosome in human chronic granulocytic leukemia. Science. 1960; 132:1497-9.
[18] Propp S, Lizzi FA. Philadelphia chromosome in acute lymphocytic leukemia. Blood. 1970;36(3):353-60.
[19] Priest JR, Robison LL, McKenna RW, Lindquist LL, Warkentin PI, LeBien TW, Woods WG, Kersey JH, Coccia PF, Nesbit ME Jr. Philadelphia chromosome positive childhood acute lymphoblastic leukemia. Blood. 1980;56(1):15-22.
[20] Maurer J, Janssen JW, Thiel E, van Denderen J, Ludwig WD, Aydemir U, Heinze B, Fonatsch C, Harbott J, Reiter A, et al. Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet. 1991;337(8749):1055-8.
[21] de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1982;300(5894):765-7.
[22] Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph' translocation. Nature. 1985 Jun 27-Jul 3;315(6022):758-61.
[23] Hooberman AL, Carrino JJ, Leibowitz D, Rowley JD, Le Beau MM, Arlin ZA, Westbrook CA. Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1989;86(11):4259-63.
[24] Schaefer-Rego K, Arlin Z, Shapiro LG, Mears JG, Leibowitz D. Molecular heterogeneity of adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Res. 1988;48(4):866-9.
[25] Goff SP, Gilboa E, Witte ON, Baltimore D. Structure of the Abelson murine leukemia virus genome and the homologous cellular gene: studies with cloned viral DNA. Cell. 1980;22(3):777-85.
[26] Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986;47(2):277-84.
[27] Jackson P, Baltimore D. N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. EMBO J. 1989;8(2):449-56.
[28] Konopka JB, Witte ON. Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol. 1985;5(11):3116-23.
[29] Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37(3):1035-42.
[30] Franz WM, Berger P, Wang JY. Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. EMBO J. 1989;8(1):137-47.
[31] Abdel-Latif AA. Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. Pharmacol Rev. 1986;38(3):227-72.
[32] Kipreos ET, Wang JY. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA. Science. 1992;256(5055):382-5.
[33] Van Etten RA, Jackson P, Baltimore D. The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell. 1989;58(4):669-78.
[34] McWhirter JR, Wang JY. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 1993;12(4):1533-46.
[35] Van Etten RA, Jackson PK, Baltimore D, Sanders MC, Matsudaira PT, Janmey PA. The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol. 1994;124(3):325-40.
[36] Hariharan IK, Adams JM. cDNA sequence for human bcr, the gene that translocates to the abl oncogene in chronic myeloid leukaemia. EMBO J. 1987;6(1):115-9.
[37] Collins S, Coleman H, Groudine M. Expression of bcr and bcr-abl fusion transcripts in normal and leukemic cells. Mol Cell Biol. 1987;7(8):2870-6.
[38] Stam K, Heisterkamp N, Reynolds FH Jr, Groffen J. Evidence that the phl gene encodes a 160,000-dalton phosphoprotein with associated kinase activity. Mol Cell Biol. 1987;7(5):1955-60.
[39] Timmons MS, Witte ON. Structural characterization of the BCR gene product. Oncogene. 1989;4(5):559-67.
[40] Li WJ, Dreazen O, Kloetzer W, Gale RP, Arlinghaus RB. Characterization of bcr gene products in hematopoietic cells. Oncogene. 1989;4(2):127-38.
[41] Maru Y, Witte ON. The BCR gene encodes a novel serine/threonine kinase activity within a single exon. Cell. 1991;67(3):459-68.
[42] Pendergast AM, Muller AJ, Havlik MH, Maru Y, Witte ON. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell. 1991;66(1):161-71.
[43] Ron D, Zannini M, Lewis M, Wickner RB, Hunt LT, Graziani G, Tronick SR, Aaronson SA, Eva A. A region of proto-dbl essential for its transforming activity shows sequence similarity to a yeast cell cycle gene, CDC24, and the human breakpoint cluster gene, bcr. New Biol. 1991;3(4):372-9.
[44] Ohya Y, Miyamoto S, Ohsumi Y, Anraku Y. Calcium-sensitive cls4 mutant of Saccharomyces cerevisiae with a defect in bud formation. J Bacteriol. 1986;165(1):28-33.
[45] Diekmann D, Brill S, Garrett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A. Bcr encodes a GTPase-activating protein for p21rac. Nature. 1991;351(6325):400-2.
[46] Hall C, Monfries C, Smith P, Lim HH, Kozma R, Ahmed S, Vanniasingham V, Leung T, Lim L. Novel human brain cDNA encoding a 34,000 Mr protein n-chimaerin, related to both the regulatory domain of protein kinase C and BCR, the product of the breakpoint cluster region gene. J Mol Biol. 1990;211(1):11-6.
[47] Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, Thompson A, Dhand R, Hsuan J, Totty N, et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell. 1991;65(1):91-104.
[48] Clark SS, McLaughlin J, Timmons M, Pendergast AM, Ben-Neriah Y, Dow LW, Crist W, Rovera G, Smith SD, Witte ON. Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL). Science. 1988;239(4841 Pt 1):775-7.
[49] Hermans A, Heisterkamp N, von Linden M, van Baal S, Meijer D, van der Plas D, Wiedemann LM, Groffen J, Bootsma D, Grosveld G. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33-40.
[50] Daley GQ, McLaughlin J, Witte ON, Baltimore D. The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science. 1987;237(4814):532-5.
[51] Lugo TG, Witte ON. The BCR-ABL oncogene transforms Rat-1 cells and cooperates with v-myc. Mol Cell Biol. 1989;9(3):1263-70.
[52] Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247(4946):1079-82.
[53] McLaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci U S A. 1987;84(18):6558-62.
[54] Young JC, Witte ON. Selective transformation of primitive lymphoid cells by the BCR/ABL oncogene expressed in long-term lymphoid or myeloid cultures. Mol Cell Biol. 1988;8(10):4079-87.
[55] McLaughlin J, Chianese E, Witte ON. Alternative forms of the BCR-ABL oncogene have quantitatively different potencies for stimulation of immature lymphoid cells. Mol Cell Biol. 1989;9(5):1866-74.
[56] Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. EMBO J. 1990;9(4):1069-78.
[57] Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824-30.
[58] Kelliher MA, McLaughlin J, Witte ON, Rosenberg N. Induction of a chronic myelogenous leukemia-like syndrome in mice with v-abl and BCR/ABL. Proc Natl Acad Sci U S A. 1990;87(17):6649-53.
[59] Hariharan IK, Harris AW, Crawford M, Abud H, Webb E, Cory S, Adams JM. A bcr-v-abl oncogene induces lymphomas in transgenic mice. Mol Cell Biol. 1989;9(7):2798-805.
[60] Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990;344(6263):251-3.
[61] Shved AD, Zolotukhin SB, Matsuka GKh. Antisense RNAs: a novel mechanism for the regulation of gene expression. Biopolym Cell. 1987; 3(1):3-17.
[62] Zhenodarova SM. Synthetic endoribonucleases. Mol Biol (Mosk). 1993;27(2):245-68.
[63] Szczylik C, Skorski T, Nicolaides NC, Manzella L, Malaguarnera L, Venturelli D, Gewirtz AM, Calabretta B. Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides. Science. 1991;253(5019):562-5.
[64] Robinson I. B. Molecular and cellular biology of multidrug resistance in tumor cells. New York: Plenum publ. corp. 1990. 271 p.
[65] Croop JM, Gros P, Housman DE. Genetics of multidrug resistance. J Clin Invest. 1988;81(5):1303-9.
[66] Gottesman MM, Pastan I. Resistance to multiple chemotherapeutic agents in human cancer cells. Trends Pharmacol Sci. 1988;9(2):54-8.
[67] Endicott JA, Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137-71.
[68] Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990;42(3):155-99.
[69] Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67-113.
[70] Cornwell MM, Safa AR, Felsted RL, Gottesman MM, Pastan I. Membrane vesicles from multidrug-resistant human cancer cells contain a specific 150- to 170-kDa protein detected by photoaffinity labeling. Proc Natl Acad Sci U S A. 1986;83(11):3847-50.
[71] Hamada H, Tsuruo T. Purification of the 170- to 180-kilodalton membrane glycoprotein associated with multidrug resistance. 170- to 180-kilodalton membrane glycoprotein is an ATPase. J Biol Chem. 1988;263(3):1454-8.
[72] Azzaria M, Schurr E, Gros P. Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol. 1989;9(12):5289-97.
[73] Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992;267(7):4854-8.
[74] Shimabuku AM, Nishimoto T, Ueda K, Komano T. P-glycoprotein. ATP hydrolysis by the N-terminal nucleotide-binding domain. J Biol Chem. 1992;267(7):4308-11.
[75] Krogstad DJ, Gluzman IY, Kyle DE, Oduola AM, Martin SK, Milhous WK, Schlesinger PH. Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine resistance. Science. 1987;238(4831):1283-5.
[76] Martin SK, Oduola AM, Milhous WK. Reversal of chloroquine resistance in Plasmodium falciparum by verapamil. Science. 1987;235(4791):899-901.
[77] Gros P, Ben Neriah YB, Croop JM, Housman DE. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature. 1986 Oct 23-29;323(6090):728-31.
[78] Gros P, Raymond M, Bell J, Housman D. Cloning and characterization of a second member of the mouse mdr gene family. Mol Cell Biol. 1988;8(7):2770-8.
[79] Van der Bliek AM, Baas F, Ten Houte de Lange T, Kooiman PM, Van der Velde-Koerts T, Borst P. The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 1987;6(11):3325-31.
[80] Devault A, Gros P. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities. Mol Cell Biol. 1990;10(4):1652-63.
[81] Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 1989;9(3):1346-50.
[82] Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci U S A. 1987;84(1):265-9.
[83] Baas F, Borst P. The tissue dependent expression of hamster P-glycoprotein genes. FEBS Lett. 1988;229(2):329-32.
[84] Arceci RJ, Croop JM, Horwitz SB, Housman D. The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus. Proc Natl Acad Sci U S A. 1988;85(12):4350-4.
[85] Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A. 1987;84(21):7735-8.
[86] Thorgeirsson SS, Huber BE, Sorrell S, Fojo A, Pastan I, Gottesman MM. Expression of the multidrug-resistant gene in hepatocarcinogenesis and regenerating rat liver. Science. 1987;236(4805):1120-2.
[87] Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 1991;66(1):85-94.
[88] Pirker R, Goldstein LJ, Ludwig H, Linkesch W, Lechner C, Gottesman MM, Pastan I. Expression of a multidrug resistance gene in blast crisis of chronic myelogenous leukemia. Cancer Commun. 1989;1(2):141-4.
[89] Shen DW, Fojo A, Chin JE, Roninson IB, Richert N, Pastan I, Gottesman MM. Human multidrug-resistant cell lines: increased mdr1 expression can precede gene amplification. Science. 1986;232(4750):643-5.
[90] Ogura M, Takatori T, Tsuruo T. Purification and characterization of NF-R1 that regulates the expression of the human multidrug resistance (MDR1) gene. Nucleic Acids Res. 1992;20(21):5811-7.
[91] Zastawny RL, Ling V. Structural and functional analysis of 5' flanking and intron 1 sequences of the hamster P-glycoprotein pgp1 and pgp2 genes. Biochim Biophys Acta. 1993;1173(3):303-13.
[92] Noonan KE, Beck C, Holzmayer TA, Chin JE, Wunder JS, Andrulis IL, Gazdar AF, Willman CL, Griffith B, Von Hoff DD, et al. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction. Proc Natl Acad Sci U S A. 1990;87(18):7160-4.
[93] Chaudhary PM, Roninson IB. Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst. 1993;85(8):632-9.
[94] Gill DR, Hyde SC, Higgins CF, Valverde MA, Mintenig GM, SepГєlveda FV. Separation of drug transport and chloride channel functions of the human multidrug resistance P-glycoprotein. Cell. 1992;71(1):23-32.
[95] Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15-21;321(6067):209-13.
[96] Holliday R. The inheritance of epigenetic defects. Science. 1987;238(4824):163-70.
[97] Cedar H, Razin A. DNA methylation and development. Biochim Biophys Acta. 1990;1049(1):1-8.
[98] Cedar H. DNA methylation and gene activity. Cell. 1988;53(1):3-4.
[99] de Bustros A, Nelkin BD, Silverman A, Ehrlich G, Poiesz B, Baylin SB. The short arm of chromosome 11 is a "hot spot" for hypermethylation in human neoplasia. Proc Natl Acad Sci U S A. 1988;85(15):5693-7.
[100] Stephenson J, Akdag R, Ozbek N, Mufti GJ. Methylation status within exon 3 of the c-myc gene as a prognostic marker in myeloma and leukaemia. Leuk Res. 1993;17(3):291-3.
[101] Drach D, Zhao S, Drach J, Mahadevia R, Gattringer C, Huber H, Andreeff M. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood. 1992;80(11):2729-34.
[102] Utsunomiya A, Kuwazuru Y, Chuman Y, Mishige Y, Saito T, Terada A, Iwahashi M, Hanada S, Yoshimura A, Akiyama S, et al. Chronic myelogenous leukemia with blastic crisis in which expression of P-glycoprotein was associated with resistance to chemotherapy. Gan To Kagaku Ryoho. 1992;19(11):1915-8.
[103] List AF, Spier CM. Multidrug resistance in acute leukemia: a conserved physiologic function. Leuk Lymphoma. 1992;8(1-2):9-14.
[104] Goasguen JE, Dossot JM, Fardel O, Le Mee F, Le Gall E, Leblay R, LePrise PY, Chaperon J, Fauchet R. Expression of the multidrug resistance-associated P-glycoprotein (P-170) in 59 cases of de novo acute lymphoblastic leukemia: prognostic implications. Blood. 1993;81(9):2394-8.
[105] Tiirikainen MI, Elonen E, Ruutu T, Jansson SE, Krusius T. Clinical significance of P-glycoprotein expression in acute leukaemia as analysed by immunocytochemistry. Eur J Haematol. 1993;50(5):279-85.