Biopolym. Cell. 1994; 10(3-4):5-23.
Molecular biological methods of detection and identification of microorganisms in the environment
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
A review summarizes the literature data devoted to new molecular methods for detection and identifcation of microorganisms in the environment. The advantages of novel methods over conventional ones are discussed.
Full text: (PDF, in Russian)
References
[1]
Watrud LS, Perlak FJ, Tran MT. et al. Cloning of the Bacillus thuringiensis subsp. kurstaki delta-endotoxin gene into Pseudomonas fluorescens: molecular biology and ecology of an engineered microbial pesticide. Engineered organisms in the environment: scientific tissues. Eds H. O. Halvorson, D. Pramer, M. Roal. Washington: Amer. Soc. Microbiol., 1985: 40-6.
[2]
Cannon FC, Beynon J, Hankinson T. et al. Increasing biological fixation by genetic manipulation. Nitrogen fixation: hundred years after. Eds. H. Bothe, F. J. Bruijnde, W. E. Newton. New York : Fisher, 1988: 734-40.
[3]
Lindow SE, Panopolous NJ. Field tests of recombinant Ice - Pseudomonas syrin- gae for biological frost control in potato. Release of genetically engineered microorganisms. San Diego : Acad, press, 1988: 121-31.
[4]
Shaw JJ, Dane F, Geiger D, Kloepper JW. Use of bioluminescence for detection of genetically engineered microorganisms released into the environment. Appl Environ Microbiol. 1992;58(1):267-73.
[6]
Vinogradsky SN. Soil Microbiology. Problems and Methods. 50 years of investigation. Izd-vo AN SSSR, 1952; 792 p.
[7]
Ferguson RL, Buckley EN, Palumbo AV. Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol. 1984;47(1):49-55.
[8]
Hoppe H-G. Relations between active bacteria and heterotrophic potential in the sea. Netherlands Journal of Sea Research. 1978;12(1):78–IN4.
[9]
Roszak DB, Colwell RR. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987;51(3):365-79.
[10]
Kholodnyy N. G. Selected works in three volumes. Kiev: Izd-vo AN SSSR, 1957. vol. 3. 526 p.
[11]
Perfil'ev BV, Gabe D.R. Capillary methods of investigating micro-organisms. L. Izd-vo AN SSSR, 1961: 543 p.
[12]
Hall GH, Jones JG, Pickup RW, Simon BM. Methods to study the bacterial ecology of freshwater environments. Techniques in Microbial Ecology. 1990;181–209.
[13]
Nikitin DI, Vasil'yeva LV, Lokhmacheva RA. New rare forms of soil microorganisms. M.: Nauka, 1966; 70p.
[14]
Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986;51(5):873-84.
[15]
Milkman R. Electrophoretic variation in Escherichia coli from natural sources. Science. 1973;182(4116):1024-6.
[16]
Young JPW. Rhizobium population genetics: enzyme polymorphism in isolates from peas, clover, beans and lucerne grown at the same site. Microbiology. 1985;131(9):2399–408.
[17]
Young JPW, Wexler M. Sym Plasmid and Chromosomal Genotypes are Correlated in Field Populations of Rhizobium leguminosarum. Microbiology. 1988;134(10):2731–9.
[18]
Wortman AT, Somerville CC, Colwell RR. Chitinase determinants of Vibrio vulnificus: gene cloning and applications of a chitinase probe. Appl Environ Microbiol. 1986;52(1):142-5.
[19]
Morris JG Jr, Wright AC, Roberts DM, Wood PK, Simpson LM, Oliver JD. Identification of environmental Vibrio vulnificus isolates with a DNA probe for the cytotoxin-hemolysin gene. Appl Environ Microbiol. 1987;53(1):193-5.
[20]
Grunstein M, Hogness DS. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975;72(10):3961-5.
[21]
Moseley SL, Huq I, Alim AR, So M, Samadpour-Motalebi M, Falkow S. Detection of enterotoxigenic Escherichia coli by DNA colony hybridization. J Infect Dis. 1980;142(6):892-8.
[22]
Hill WE, Payne WL, Aulisio CC. Detection and enumeration of virulent Yersinia enterocolitica in food by DNA colony hybridization. Appl Environ Microbiol. 1983;46(3):636-41.
[23]
Fitts R, Diamond M, Hamilton C, Neri M. DNA-DNA hybridization assay for detection of Salmonella spp. in foods. Appl Environ Microbiol. 1983;46(5):1146-51.
[24]
Bermúdez M, Hazen TC. Phenotypic and genotypic comparison of Escherichia coli from pristine tropical waters. Appl Environ Microbiol. 1988;54(4):979-83.
[25]
Sayler GS, Shields MS, Tedford ET, Breen A, Hooper SW, Sirotkin KM, Davis JW. Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol. 1985;49(5):1295-303.
[26]
Jain RK, Sayler GS, Wilson JT, Houston L, Pacia D. Maintenance and stability of introduced genotypes in groundwater aquifer material. Appl Environ Microbiol. 1987;53(5):996-1002.
[27]
Barkay T, Fouts DL, Olson BH. Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol. 1985;49(3):686-92.
[28]
Fredrickson JK, Bezdicek DF, Brockman FJ, Li SW. Enumeration of Tn5 mutant bacteria in soil by using a most- probable-number-DNA hybridization procedure and antibiotic resistance. Appl Environ Microbiol. 1988;54(2):446-53.
[29]
Lindstrom K, Hakola S, Kaijalainen S. et al. Molecular tools for identification of Rhizobium galegae from cultures, root nodules and soil. New horizons in nitrogen fixation: Proc. of the 9th Int. congr. on nitrogen fixation (Cancun, Mexico, December, 6-12, 1992). Eds R. Palacios, J. Mora, W. E. Newton. New York: Kluwer Acad, publ., 1993. 626 p.
[30]
Koch WH, Payne WL, Wentz BA, Cebula TA. Rapid polymerase chain reaction method for detection of Vibrio cholerae in foods. Appl Environ Microbiol. 1993;59(2):556-60.
[31]
Tsai YL, Palmer CJ, Sangermano LR. Detection of Escherichia coli in sewage and sludge by polymerase chain reaction. Appl Environ Microbiol. 1993;59(2):353-7.
[32]
Trevors JT. DNA extraction from soil. Microbial Releases. 1992; 1(1): 3-9.
[33]
Somerville CC, Knight IT, Straube WL, Colwell RR. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl Environ Microbiol. 1989;55(3):548-54.
[34]
Fuhrman JA, Comeau DE, Hagström A, Chan AM. Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol. 1988;54(6):1426-9.
[35]
Ogram A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments. J Microbiol Methods. 1987;7(2-3):57–66.
[36]
Holben WE, Jansson JK, Chelm BK, Tiedje JM. DNA Probe Method for the Detection of Specific Microorganisms in the Soil Bacterial Community. Appl Environ Microbiol. 1988;54(3):703-711.
[37]
Selenska S, Klingmüller W. Direct recovery and molecular analysis of DNA and RNA from soil. Microb Releases. 1992;1(1):41-6.
[38]
Tsai YL, Olson BH. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991;57(4):1070-4.
[39]
Jacobsen CS, Rasmussen OF. Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol. 1992;58(8):2458-62.
[40]
Moran MA, Torsvik VL, Torsvik T, Hodson RE. Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol. 1993;59(3):915-8.
[41]
Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350-4.
[42]
Scharf SJ, Horn GT, Erlich HA. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science. 1986;233(4768):1076-8.
[43]
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487-91.
[44]
Ou CY, Kwok S, Mitchell SW, Mack DH, Sninsky JJ, Krebs JW, Feorino P, Warfield D, Schochetman G. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988;239(4837):295-7.
[45]
Steffan RJ, Atlas RM. DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol. 1988;54(9):2185-91.
[46]
Brauns LA, Hudson MC, Oliver JD. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl Environ Microbiol. 1991;57(9):2651-5.
[47]
Amann R, Springer N, Ludwig W, Görtz HD, Schleifer KH. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature. 1991;351(6322):161-4.
[48]
Islam MS, Hasan MK, Miah MA, Sur GC, Felsenstein A, Venkatesan M, Sack RB, Albert MJ. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl Environ Microbiol. 1993;59(2):536-40.
[49]
Way JS, Josephson KL, Pillai SD, Abbaszadegan M, Gerba CP, Pepper IL. Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl Environ Microbiol. 1993;59(5):1473-9.
[50]
Chaudhry GR, Toranzos GA, Bhatti AR. Novel method for monitoring genetically engineered microorganisms in the environment. Appl Environ Microbiol. 1989;55(5):1301-4.
[51]
Amici A, Bazzicalupo M, Gallori E, Rollo F. Monitoring a genetically engineered bacterium in a freshwater environment by rapid enzymatic amplification of a synthetic DNA "number-plate". Appl Microbiol Biotechnol. 1991;36(2):222-7.
[52]
Henschke RB, Henschke EJ, Schmidt FR. Monitoring survival and gene transfer in soil microcosms of recombinant Escherichia coli designed to represent an industrial production strain. Appl Microbiol Biotechnol. 1991;35(2):247-52.
[53]
Pichard SL, Paul JH. Detection of Gene Expression in Genetically Engineered Microorganisms and Natural Phytoplankton Populations in the Marine Environment by mRNA Analysis. Appl Environ Microbiol. 1991;57(6):1721-1727.
[54]
Herrick JB, Madsen EL, Batt CA, Ghiorse WC. Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol. 1993;59(3):687-94.
[55]
Berg K-HL, Bothe H. The distribution of denitrifying bacteria in soils monitored by DNA-probing. FEMS Microbiol Ecol. 1992;9(4):331–40.
[56]
Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531-5.
[57]
Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18(24):7213-8.
[58]
Cancilla MR, Powell IB, Hillier AJ, Davidson BE. Rapid genomic fingerprinting of Lactococcus lactis strains by arbitrarily primed polymerase chain reaction with 32P and fluorescent labels. Appl Environ Microbiol. 1992;58(5):1772-5.
[59]
Mazurier S, van de Giessen A, Heuvelman K, Wernars K. RAPD analysis of Campylobacter isolates: DNA fingerprinting without the need to purify DNA. Lett Appl Microbiol. 1992;14(6):260-2.
[60]
Neves MCP, Coutino HLC, Rumjanek NG. et al. Genetic adaptation of Bradyrhizobium japonicum strains following naturalization into soil of the Brazilian Cerrados. New horizons in nitrogen fixation: Proc. of the 9th Int. congr. nitrogen fixation (Cancun, Mexico, December, 6-12, 1992). Eds R. Palacios, J. Mora, W. E. Newton. New York: Kluwer Acad, publ., 1993: 735.
[61]
Lupski JR, Weinstock GM. Short, interspersed repetitive DNA sequences in prokaryotic genomes. J Bacteriol. 1992;174(14):4525-9.
[62]
Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37(3):1015-26.
[63]
Higgins CF, McLaren RS, Newbury SF. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene. 1988;72(1-2):3-14.
[64]
Sharples GJ, Lloyd RG. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res. 1990;18(22):6503-8.
[65]
Hulton CS, Higgins CF, Sharp PM. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol. 1991;5(4):825-34.
[66]
Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823-31.
[67]
de Bruijn FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992;58(7):2180-7.
[68]
Judd AK, Schneider M, Sadowsky MJ, de Bruijn FJ. Use of repetitive sequences and the polymerase chain reaction technique to classify genetically related Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol. 1993;59(6):1702-8.
[69]
Giesendorf BA, van Belkum A, Koeken A, Stegeman H, Henkens MH, van der Plas J, Goossens H, Niesters HG, Quint WG. Development of species-specific DNA probes for Campylobacter jejuni, Campylobacter coli, and Campylobacter lari by polymerase chain reaction fingerprinting. J Clin Microbiol. 1993;31(6):1541-6.
[70]
Waterhouse RN, Glover LA. Identification of procaryotic repetitive DNA suitable for use as fingerprinting probes. Appl Environ Microbiol. 1993;59(5):1391-7.
[71]
Jurtshuk RJ, Blick M, Bresser J, Fox GE, Jurtshuk P Jr. Rapid in situ hybridization technique using 16S rRNA segments for detecting and differentiating the closely related gram-positive organisms Bacillus polymyxa and Bacillus macerans. Appl Environ Microbiol. 1992;58(8):2571-8.
[72]
Stahl DA, Lane DJ, Olsen GJ, Pace NR. Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science. 1984;224(4647):409-11.
[73]
Stahl DA, Lane DJ, Olsen GJ, Pace NR. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol. 1985;49(6):1379-84.
[74]
Pace NR, Stahl DA, Lane DJ, Olsen GJ. The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. Advances in Microbial Ecology. 1986;1–55.
[75]
Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990;345(6270):60-3.
[76]
Ward DM, Weller R, Bateson MM. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990;345(6270):63-5. PubMed
[77]
Eardly BD, Young JP, Selander RK. Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol. 1992;58(6):1809-15.
[78]
van Kuppeveld FJ, van der Logt JT, Angulo AF, van Zoest MJ, Quint WG, Niesters HG, Galama JM, Melchers WJ. Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl Environ Microbiol. 1992;58(8):2606-15.
[79]
Angerer RC, Cox KH, Angerer LM. In situ hybridization to cellular RNAs. Genetic Engineering: Principles and Methods. 1985;43–65.
[81]
Gray MW, Sankoff D, Cedergren RJ. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Nucleic Acids Res. 1984;12(14):5837-52.
[82]
Leff LG, Dana JR, McArthur JV, Shimkets LJ. Detection of Tn5-like sequences in kanamycin-resistant stream bacteria and environmental DNA. Appl Environ Microbiol. 1993;59(2):417-21.
[83]
Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59(3):695-700.
[84]
Jensen MA, Webster JA, Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol. 1993;59(4):945-52.
[85]
Berthier Y, Verdier V, Guesdon JL, Chevrier D, Denis JB, Decoux G, Lemattre M. Characterization of Xanthomonas campestris Pathovars by rRNA Gene Restriction Patterns. Appl Environ Microbiol. 1993;59(3):851-9.
[86]
Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol. 1988;170(2):720-6.
[87]
Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990;172(2):762-70.
[88]
DeLong EF, Wickham GS, Pace NR. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science. 1989;243(4896):1360-3.
[89]
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56(6):1919-25.
[90]
Drahos DJ, Hemming BC, McPherson S. Tracking Recombinant Organisms in the Environment: β–Galactosidase as a Selectable Non–Antibiotic Marker for Fluorescent Pseudomonads. Bio/Technology. 1986;4(5):439–44.
[91]
Williams PA, Murray K. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol. 1974;120(1):416-23.
[92]
Leij FAAM de, Bailey MJ, Whipps JM, Lynch JM. A simple most probable number technique for the sensitive recovery of a genetically-modified Pseudomonas aureofaciens from soil. Lett Appl Microbiol. 1993;16(6):307–10.
[94]
Couteaudier Y, Daboussi MJ, Eparvier A, Langin T, Orcival J. The GUS gene fusion system (Escherichia coli beta-D-glucuronidase gene), a useful tool in studies of root colonization by Fusarium oxysporum. Appl Environ Microbiol. 1993;59(6):1767-73.
[95]
Stewart GS, Williams P. lux genes and the applications of bacterial bioluminescence. J Gen Microbiol. 1992;138(7):1289-300.
[96]
Engebrecht J, Nealson K, Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell. 1983;32(3):773-81.
[97]
Cohn DH, Ogden RC, Abelson JN, Baldwin TO, Nealson KH, Simon MI, Mileham AJ. Cloning of the Vibrio harveyi luciferase genes: use of a synthetic oligonucleotide probe. Proc Natl Acad Sci U S A. 1983;80(1):120-3.
[98]
Ptitsyn LR, Gurevich VB, Barsanova TG, Shenderov AN, KhaÄkinson MIa. Cloning and insertion mutagenesis of DNA fragment coding for the luminescent system of Photobacterium leiognathi. Mol Gen Mikrobiol Virusol. 1988;(10):17-9.
[99]
Delong EF, Steinhauer D, Israel A, Nealson KH. Isolation of the lux genes from Photobacterium leiognathi and expression in Escherichia coli. Gene. 1987;54(2-3):203-10.
[101]
Rattray EA, Prosser JI, Killham K, Glover LA. Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil. Appl Environ Microbiol. 1990;56(11):3368-74.
[102]
Heller S, Bühler S, Kilz S, Mieschendahl M. Bioluminescence-based detection of genetically engineered microorganisms in nonsterile river water. Microb Releases. 1992;1(1):35-9.
[103]
de Weger LA, Dunbar P, Mahafee WF, Lugtenberg BJ, Sayler GS. Use of Bioluminescence Markers To Detect Pseudomonas spp. in the Rhizosphere. Appl Environ Microbiol. 1991;57(12):3641-4.
[104]
Shaw JJ, Kado CI. Development of a Vibrio Bioluminescence Gene–Set to Monitor Phytopathogenic Bacteria During the Ongoing Disease Process in a Non–Disruptive Manner. Bio/Technology. 1986;4(6):560–4.
[105]
Kozyrovska NA, Alexeyev MF, Kovtunovich GL, Gun'kovska NV, Kordyum VA. Bioluminescence-based detection of Klebsiella oxytoca VN13 in the environment. Biopolym Cell. 1994; 10(2):17-23.
[106]
Shaw JJ. Transposon Tn 4431 mutagenesis of Xanthomonas campestris pv. campestris: characterization of a nonpathogenic mutant and cloning of a locus for pathogenicity. MPMI. 1988;1(1):39-45.
[107]
Shen H, Gold SE, Tamaki SJ, Keen NT. Construction of a Tn7-lux system for gene expression studies in gram-negative bacteria. Gene. 1992;122(1):27-34.
[108]
Legocki RP, Legocki M, Baldwin TO, Szalay AA. Bioluminescence in soybean root nodules: Demonstration of a general approach to assay gene expression in vivo by using bacterial luciferase. Proc Natl Acad Sci U S A. 1986;83(23):9080-4.
[109]
Silcock DJ, Waterhouse RN, Glover LA, Prosser JI, Killham K. Detection of a single genetically modified bacterial cell in soil by using charge coupled device-enhanced microscopy. Appl Environ Microbiol. 1992;58(8):2444-8.
[110]
King JM, Digrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990;249(4970):778-81.
[111]
O'Kane DJ, Lingle WL, Wampler JE, Legocki M, Legocki RP, Szalay AA. Visualization of bioluminescence as a marker of gene expression in rhizobium-infected soybean root nodules. Plant Mol Biol. 1988;10(5):387-99.
[112]
Boivin R, Chalifour FP, Dion P. Construction of a Tn5 derivative encoding bioluminescence and its introduction in Pseudomonas, Agrobacterium and Rhizobium. Mol Gen Genet. 1988;213(1):50-5.
[113]
de Lorenzo V, Herrero M, Jakubzik U, Timmis KN. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990;172(11):6568-72.
[114]
Wolk CP, Cai Y, Panoff JM. Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A. 1991;88(12):5355-9.
[115]
de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci U S A. 1985;82(23):7870-3.
[116]
Wood KV, Lam YA, Seliger HH, McElroy WD. Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science. 1989;244(4905):700-2.
[117]
Cebolla A, Ruiz-Berraquero F, Palomares AJ. Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring. Appl Environ Microbiol. 1993;59(8):2511-9.
[118]
Cebolla A, Ruiz-Berraquero F, Palomares AJ. Expression and quantification of firefly luciferase under control of Rhizobium meliloti symbiotic promoters. J Biolumin Chemilumin. 1991;6(3):177-84.
[119]
Shaw JJ, Beauchamp C, Dane F, Kriel RL. Securing a permit from the United Stales Department of Agriculture for field work with genetically engineered microbes: a non-prohibitory process. Microbial Releases. 1992; 1(1):51-3.