Biopolym. Cell. 1985; 1(5):241-247.
Comparative study of DNA polymerases α and β from sea urchin embryos
1Terentiev L. L., 1Terentieva N. A., 1Rasskazov V. A.
  1. Pacific Institute of Bioorganic Chemistry, Far Eastern Research Centre, Academy of Sciences of the USSR
    Vladivostok, USSR


Two DNA polymerases were isolated from embryonic cells of the sea urchin Strongylocentrotus mermedlus. In terms of physicochemical properties and primer-template specificity these enzymes are classified as DNA polymerases α and β. DNA polymerase a can interact both with single strand and 3'-hydroxyl termini in gapped DNA. The interaction of DNA polymerase α with single-stranded sites depends on the template base composition. DNA polymerase p recognizes only 3' primer termini (hydroxyl or phosphoryl). DNA polymerase a realizes DNA synthesis via a moderately processive mechanism and is unable to fill gaps in the DNA chain to completion. In contrast, DNA polymerase β is a distributive enzyme and fills gaps in the DNA chain completely.


[1] Weissbach A. Eukaryotic DNA polymerases. Annu Rev Biochem. 1977;46:25-47.
[2] De Petrocellis B, Parisi E, Filosa S, Capasso A. Separation and partial characterization of DNA polymerases in sea urchin Paracentrotus lividus eggs. Biochem Biophys Res Commun. 1976;68(3):954-60.
[3] Racine FM, Morris PW. DNA polymerase alpha and beta in the California urchin. Nucleic Acids Res. 1978;5(10):3945-57.
[4] Loeb LA. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J Biol Chem. 1969;244(7):1672-81.
[5] Suzuki-Hori C, Nagano H, Mano Y. DNA polymerase-beta from the nuclear fraction of sea urchin embryos: characterization of the purified enzyme. J Biochem. 1977;82(6):1613-21.
[6] Hobart PM, Infante AA. A low molecular weight DNA polymerase beta in the sea urchin Strongylocentrotus purpurantus. Partial purification, properties, and changes in development. J Biol Chem. 1978;253(22):8229-38.
[7] Terent'ev LL, Terent'eva NA, Rassazov VA. DNA-polymerase from sea urchin (Strongylocentrotus intermedius. Embryos. Biokhimiia. 1980;45(9):1603-8.
[8] Terent'ev LL, Terent'eva NA, Rasskazov VA. Processing and some properties of DNA-polymerase alpha from sea urchin embryos. Biokhimiia. 1983;48(2):224-9.
[9] Terent'ev LL, Terent'eva NA, Rasskazov VA. Isolation and various properties of beta DNA polymerase from the embryos of the sea urchin Strongylocentrotus intermedius. Biokhimiia. 1984;49(7):1103-9.
[10] Terent'ev LA, Terentyeva HA, Rasskazov VA. Comparative studies of DNA polymerases ? and ? of sea urchin embryos. In the book.: Structure and function of the cell nucleus: Proc. of reports. Proc. symposium. Pushchino, 1984, p. 278-279.
[11] Wang TS, Sedwick WD, Korn D. Nuclear deoxyribonucleic acid polymerase. Further observations on the structure and properties of the enzyme from human KB cells. J Biol Chem. 1975;250(17):7040-4.
[12] Bollum FJ. Mammalian DNA polymerases. Prog Nucleic Acid Res Mol Biol. 1975;15(0):109-44.
[13] Romberg A. DNA replication. Ed. W. H. Freeman. San Francisco : Stanford Univ., 1980. 380 p.
[14] Korn D, Fisher PA, Wang TS. Mechanisms of catalysis of human DNA polymerases alpha and beta. Prog Nucleic Acid Res Mol Biol. 1981;26:63-81.
[15] Das SK, Fujimura RK. Processiveness of DNA polymerases. A comparative study using a simple procedure. J Biol Chem. 1979;254(4):1227-32.
[16] Bambara RA, Uyemura D, Choi T. On the processive mechanism of Escherichia coli DNA polymerase I. Quantitative assessment of processivity. J Biol Chem. 1978;253(2):413-23.
[17] Fisher PA, Wang TS, Korn D. Enzymological characterization of DNA polymerase alpha. Basic catalytic properties processivity, and gap utilization of the homogeneous enzyme from human KB cells. J Biol Chem. 1979;254(13):6128-37.