Biopolym. Cell. 1985; 1(3):115-120.
Structure and Function of Biopolymers
Histone conformers are the foundation of structural chromatin rearrangements
1Khrapunov S. N.
  1. Taras Shevchenko State University of Kiev
    Kiev, USSR

Abstract

Histone oligomers may be in several structural states. Local metabolically stable states of the native conformers insignificantly differ (are degenerated) in an energetic way and are separated by low barriers which may be overcome either under changed conditions (ionic strength, pH, polarity) or during the interaction of histone oligomers with cellular effectors. Structural histone conformer rearrangements occuring at the level of changes in the tertiary and quaternary structures may determine parallel with other factors struc¬tural chromatin rearrangements underlying expression and repression of the eucaryote genes.

References

[1] Finch JT, Lutter LC, Rhodes D, Brown RS, Rushton B, Levitt M, Klug A. Structure of nucleosome core particles of chromatin.Nature. 1977;269(5623):29-36.
[2] Shick VV, Belyavsky AV, Bavykin SG, Mirzabekov AD. Primary organization of the nucleosome core particles. Sequential arrangement of histones along DNA. J Mol Biol. 1980;139(3):491-517.
[3] Crick FH, Klug A. Kinky helix. Nature. 1975;255(5509):530-3.
[4] Zhurkin VB. Local mobility of the DNA double helix. Comparison of conformational analysis with experiments. Mol Biol (Mosk). 1983;17(3):622-38.
[5] Worcel A, Strogatz S, Riley D. Structure of chromatin and the linking number of DNA. Proc Natl Acad Sci U S A. 1981;78(3):1461-5.
[6] Kornberg R. The location of nucleosomes in chromatin: specific or statistical. Nature. 1981;292(5824):579-80.
[7] Prunell A, Kornberg RD, Lutter L, Klug A, Levitt M, Crick FH. Periodicity of deoxyribonuclease I digestion of chromatin. Science. 1979;204(4395):855-8.
[8] Philip M, Jamaluddin M, Sastry RV, Chandra HS. Nucleosome core histone complex isolated gently and rapidly in 2 M NaCl is octameric. Proc Natl Acad Sci U S A. 1979;76(10):5178-82.
[9] Stein A, Page D. Core histone associations in solutions of high salt. An osmotic pressure study. J Biol Chem. 1980;255(8):3629-37.
[10] Sperling R, Wachtel EJ. The histones. Adv Protein Chem. 1981;34:1-60.
[11] Butler AP, Harrington RE, Olins DE. Salt-dependent interconversion of inner histone oligomers. Nucleic Acids Res. 1979;6(4):1509-20.
[12] Khrapunov SN, Protas AF, Berdyshev GD. Heterogeneity of the structure of histone (H2A-H2B) dimers. Biofizika. 1982;27(5):791-4.
[13] Kornberg RD, Thomas JO. Chromatin structure; oligomers of the histones. Science. 1974;184(4139):865-8.
[14] Ruiz-Carrillo A, Jorcano JL. An octamer of core histones in solution: central role of the H3-H4 tetramer in the self-assembly. Biochemistry. 1979;18(5):760-8.
[15] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Spatial organization of the histone dimer H2A-H2B in solutions of different ionic strengths. Mol Biol (Mosk). 1983;17(5):992-1000.
[16] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Structure of the histone tetramer (H3-H4)2: 1. Peculiarities of optical absorption, fluorescence and light scattering in response to changes in ionic strength and pH of the medium. Int J Biol Macromol. 1984;6(1):26-30.
[17] Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Structure of the histone tetramer (H3-H4)2: 2. Position of ?max in the tyrosyl fluorescence spectra and tyrosyl accessibility to quenchers. Int. J. Biol. MacromoL, 1984; 6(1):31—34.
[18] Dragan AI, Khrapunov SN. The red shift of tyrosine fluorescence spectrum in polyethylenglucol and urea solution. Stud biophys. 1983; 96(2):127-132.
[19] Dragan AI, Khrapunov SN, Protas AF, Berdyshev GD. The chance of ?max in tyrosol fluorescence spectra of RNAse A and histone dimmer (H2A-H2B) under denaturation. Stud biophys. 1983; 96(3):183-193.
[20] Khrapunov SN, Sivolob AV, Berdyshev GD. Theoretical prediction of the end of the spatial packing of the polypeptide chains of histones H2A and H2B. Biofizika. 1981;26(1):37-40.
[21] Khrapunov SN, Sivolob AV, Berdyshev GD. Model of the spatial contribution of histone H3 and H4 polypeptide chains. Biofizika. 1981;26(2):242-6.
[22] Khrapunov SN, Sibolov AB, Berdyshev GD. Theoretical prediction of spatial conformation of histone H2A, H3 and H4 polypeptide chains in octamer structure. Biofizika. 1981;26(3):411-4.
[23] Laskey RA, Earnshaw WC. Nucleosome assembly. Nature. 1980;286(5775):763-7.
[24] Khrapunov SN, Sivolob AV, Kucherenko NE. Features of protein-nucleic acid interactions in eukaryotic chromatin. Usp Sovrem Biol. 1984; 98, 2(5):163-176.
[25] Zayetz VW, Bavykin SG, Karpov VL, Mirzabekov AD. Stability of the primary organization of nucleosome core particles upon some conformational transitions. Nucleic Acids Res. 1981;9(5):1053-68.
[26] Dragan AI, Khrapunov SN, Berdyshev GD. Analysis of the dynamic equilibrium of histone oligomers in a solution. The nature of forces stabilizing the (H2A-H2B-H3-H4)2 octamer structure. Mol Biol (Mosk). 1985;19(5):1259-68.
[27] Weisbrod S. Active chromatin. Nature. 1982;297(5864):289-95.
[28] Khrapunov SN, Berdyshev GD. Structure and function of the basic chromatin proteins of the male gametes in animals. Usp Sovrem Biol. 1981;92(3):323-37.
[29] Kadura SN, Khrapunov SN, Chabanny VN, Berdyshev GD. Chromatin structure during male gametogenesis of grass carp. Comp Biochem Physiol. 1983; 74(4):819-823.