Флуоресцентна спектроскопія у дослідженні білково-нуклеїнових взаємодій у хроматині
DOI:
https://doi.org/10.7124/bc.000315Анотація
Короткий огляд, присвячений вивченню молекулярної організації хроматину флюоресцентними методами. Викладено результати досліджень хроматину та нуклеосоми за допомогою специфічних для ДНК та білків флюоресцентних зондів і міток, а також дані власної білкової флюоресценції, головним чином одержані авторами огляду. Продемонстровано і обговорено можливості різних підходів флюоресцентної спектроскопії при вивченні білково-нуклеїнової взаємодії, що дозволяють одержувати унікальну інформацію щодо структури та динаміки нуклеопротеїдних комплексів.Посилання
McGhee JD, Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115-56.
Mirzabekov AD. Nucleosomes structure and its dynamic transitions. Q Rev Biophys. 1980;13(2):255-95.
Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11-17;311(5986):532-7.
Thoma F, Koller T. Unravelled nucleosomes, nucleosome beads and higher order structures of chromatin: influence of non-histone components and histone H1. J Mol Biol. 1981;149(4):709-33.
Karnaukhov VN. Luminescent spectral analysis of cells. Moscow: Nauka, 1978; 207 p.
LePecq JB, Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967;27(1):87-106.
Schmitz KS. A model for the association of intercalating ligands with mononucleosomes and chromatin. J Theor Biol. 1982;98(1):29-43.
Wang J, Hogan M, Austin RH. DNA motions in the nucleosome core particle. Proc Natl Acad Sci U S A. 1982;79(19):5896-900.
Ashikawa I, Kinosita K Jr, Ikegami A, Nishimura Y, Tsuboi M, Watanabe K, Iso K, Nakano T. Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium. Biochemistry. 1983;22(25):6018-26.
Sivolob AV, Khrapunov SN. The effect of DNA supercoiling DNA on nucleosome structure. Mol Biol (Mosk). 1991;25(1):144-52.
Millar DP, Robbins RJ, Zewail AH. Torsion and bending of nucleic acids studied by subnanosecond time‐resolved fluorescence depolarization of intercalated dyes. J Chem Phys. 1982;76(4):2080–94.
Shimada J, Yamakawa H. Statistical mechanics of DNA topoisomers. The helical worm-like chain. J Mol Biol. 1985;184(2):319-29.
Levene SD, Crothers DM. Topological distributions and the torsional rigidity of DNA. A Monte Carlo study of DNA circles. J Mol Biol. 1986;189(1):73-83.
Hancock R. Topological organization of interphase DNA: the nuclear matrix and other skeletal structures. Biol Cell. 1982; 46(2): 105-22.
Cook PR. The nucleoskeleton and the topology of transcription. Eur J Biochem. 1989;185(3):487-501.
Bauer WR. Structure and reactions of closed duplex DNA. Annu Rev Biophys Bioeng. 1978;7:287-313.
Shurdov MA, Svinarchuk FP, Gruzdev AD. Torsional stress in the DNA of polytene chromosomes. Mol Biol (Mosk). 1989; 23(1):204-14.
Watanabe F. Cooperative interaction of histone H1 with DNA. Nucleic Acids Res. 1986;14(8):3573-85.
Sivolob AV, Khrapunov SN. A theoretical model of the mechanism of DNA compactization by polycations. Biofizika. 1989;34(1):28-33.
Hartman PG, Chapman GE, Moss T, Bradbury EM. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur J Biochem. 1977;77(1):45-51.
Bradbury EM, Chapman GE, Danby SE, Hartman PG, Riches PL. Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1. Eur J Biochem. 1975;57(2):521-8.
Bode J. On the reactions of fluorescamine with chromosomal proteins. Anal Biochem. 1979;99(2):274-80.
Dieterich AE, Axel R, Cantor CR. Salt-induced structural changes of nucleosome core particles. J Mol Biol. 1979;129(4):587-602.
Daban JR, Cantor CR. Structural and kinetic study of the self-assembly of nucleosome core particles. J Mol Biol. 1982;156(4):749-69.
Daban JR, Cantor CR. Role of histone pairs H2A,H2B and H3,H4 in the self-assembly of nucleosome core particles. J Mol Biol. 1982;156(4):771-89.
Isenberg I. Histones. Annu Rev Biochem. 1979;48:159-91.
Dragan AI, Khrapunou SN. The red shift of tyrosine fluorescence spectrum in polyethylenglyeol and urea solutions. Stud biophys. 1983; 96(2):127-32.
Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Structure of the histone tetramer (H3-H4)2: 2. Position of λmax in the tyrosyl fluorescence spectra and tyrosyl accessibility to quenchers. Int J Biol Macromol. 1984;6(1):31–4.
Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Spatial organization of the histone dimer H2A-H2B in solutions of different ionic strengths. Mol Biol (Mosk). 1983;17(5):992-1000.
Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. The structure of the histone dimer H2A-H2B studied by spectroscopy. Biochim Biophys Acta. 1984;787(1):97-104.
Khrapunov SN, Dragan AI, Protas AF, Berdyshev GD. Spatial organization of the (H3-H4-H2A-H2B)2 histone octamer. Mol Biol (Mosk). 1985;19(4):1011-20.
Dragan AI, Khrapunov SN. Spectroscopic studies of molecular interactions of tyrosine chromophore. I. Analysis of absorption and fluorescence. Biofizika. 1989; 34(1):7-13.
Dragan AI, Khrapunov SN. Absorbtion and luminescent studies of molecular interactions of tyrosine chromophore. II. Effect of solvent polarity on chromophore fluorescence spectra. Biofizika. 1989;34(2):187-94.
Krapunov SN, Dragan AI. Spectroscopy of intermolecular interactions of a tyrosine chromophore. III. Classification of the state of tyrosine residues in proteins based on their electron spectra. Biofizika. 1989;34(3):357-63.
Khrapunov SN, Protas AF, Sivolob AV, Dragan AI, Berdyshev GD. Intrinsic fluorescence, difference spectrophotometry and theoretical studies on tertiary structure of calf thymus histone H1. Int J Biochem. 1985;17(2):217-22.
Thomas GJ Jr, Prescott B, Olins DE. Secondary structure of histones and DNA in chromatin. Science. 1977;197(4301):385-8.
Eickbush TH, Moudrianakis EN. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry. 1978;17(23):4955-64.
Helene C, Dimicoli JL. Interaction of oligopeptides containing aromatic amino acids with nucleic acids. Fluorescence and proton magnetic resonance studies. FEBS Lett. 1972;26(1):6-10.
Mayer R, Toulme F, Montenay-Garestier T, Helene C. The role of tyrosine in the association of proteins and nucleic acids. Specific recognition of single-stranded nucleic acids by tyrosine-containing peptides. J Biol Chem. 1979;254(1):75-82.
Hélène C, Lancelot G. Interactions between functional groups in protein-nucleic acid associations. Prog Biophys Mol Biol. 1982;39(1):1-68.
Shiffman ML, Maciewicz RA, Hu AW, Howard JC, Li HJ. Protein dissociation from DNA in model systems and chromatin. Nucleic Acids Res. 1978;5(9):3409-26.
Khrapunov SN, Sivolob AV, Kucherenko NE. Fluorescence study of the interaction of calf thymus histone H1 with DNA. Int J Biol Macromol 1984;6(4):199–202.
Khrapunov SN, Sivolob AV, Kucherenko NE. The peculiarities of the H1 histone-DNA interaction. Biopolym Cell. 1986; 2(1):39-44.
Khrapunov SN, Sivolob AV, Dragan AI, Berdyshev GD. Structure of histone octamers in reconstituted polynucleosomes. Mol Biol (Mosk). 1985;19(6):1553-61.
Sivolob AV, Khrapunov SN. The structure of histone octamer in the composition of reconstituted polynucleosomes in presence of H1 histone and divalent cations. Biopolym Cell. 1987; 3(4):192-201.
Libertini LJ, Small EW. Effects of pH on low-salt transition of chromatin core particles. Biochemistry. 1982;21(14):3327-34.
Libertini LJ, Small EW. Effects of pH on the stability of chromatin core particles. Nucleic Acids Res. 1984;12(10):4351-9.
Quadrifoglio F, Giancotti V, Crescenzi V. On the interaction of oligopeptides containing aromatic amino acids with DNA in aqueous solution. FEBS Lett. 1976;65(3):345-7.
Lakowicz JR, Principles of Fluorescence Spectroscopy. Plenum Press, New York, London, 1983.
Konev SV. Excited electronically states of biopolymers. Minsk: Nauka i tekhnika, 1965; 184 p.
Gordon VC, Knobler CM, Olins DE, Schumaker VN. Conformational changes of the chromatin subunit. Proc Natl Acad Sci U S A. 1978;75(2):660-3.
Wu HM, Dattagupta N, Hogan M, Crothers DM. Structural changes of nucleosomes in low-salt concentrations. Biochemistry. 1979;18(18):3960-5.
Uberbacher EC, Ramakrishnan V, Olins DE, Bunick GJ. Neutron scattering studies of nucleosome structure at low ionic strength. Biochemistry. 1983;22(21):4916-23.
Martinson HG, True RJ, Burch JB. Specific histone-histone contacts are ruptured when nucleosomes unfold at low ionic strength. Biochemistry. 1979;18(6):1082-9.
Burton DR, Butler MJ, Hyde JE, Phillips D, Skidmore CJ, Walker IO. The interaction of core histones with DNA: equilibrium binding studies. Nucleic Acids Res. 1978;5(10):3643-63.
Fulmer AW, Fasman GD. Ionic strength-dependent conformational transitions of chromatin. Circular dichroism and thermal denaturation studies. Biopolymers. 1979;18(11):2875-91.
Sivolob AV, Dragan AI, Khrapunov SN. Theoretical study of structural transition in a nucleosome at low ionic strength. Mol Biol (Mosk). 1987;21(3):714-23.
Cary PD, Moss T, Bradbury EM. High-resolution proton-magnetic-resonance studies of chromatin core particles. Eur J Biochem. 1978;89(2):475-82.
Walker IO. Differential dissociation of histone tails from core chromatin. Biochemistry. 1984;23(23):5622-8.
Oohara I, Wada A. Spectroscopic studies on histone-DNA interactions. I. The interaction of histone (H2A, H2B) dimer with DNA: DNA sequence dependence. J Mol Biol. 1987;196(2):389-97.
Dragan AI, Sivolob AV, Khrapunov SN. The nature of forces stabilizing nucleosome structure. Dissociation of histone octamers from DNA. Mol Biol (Mosk). 1987;21(3):724-36.
Ichimura S, Mita K, Zama M. Essential role of arginine residues in the folding of deoxyribonucleic acid into nucleosome cores. Biochemistry. 1982;21(21):5329-34.