Селен і дріжджі. Генетичні механізми толерантності дріжджів до сполук селену та їхніх аналогів

Автор(и)

  • М. М. Стенчук Інститут біології клітини НАН України вул. Драгоманова, 14/16, Львів, Україна, 79005 Автор
  • Л. Б. Чабан Інститут біології клітини НАН України вул. Драгоманова, 14/16, Львів, Україна, 79005; Львівський національний університет імені Івана Франка вул. Грушевського, 4, Львів, Україна, 79005 Автор
  • М. В. Гончар Інститут біології клітини НАН України вул. Драгоманова, 14/16, Львів, Україна, 79005; Львівський національний університет імені Івана Франка вул. Грушевського, 4, Львів, Україна, 79005 Автор

DOI:

https://doi.org/10.7124/bc.000715

Ключові слова:

yeast, selenium, tolerance

Анотація

Селен (Se) і його сполуки проявляють токсичну і канцерогенну дію на організми людини і тварин, а в малих кількостях цей мікроелемент відіграє суттєву роль для живих істот. Тому важливо встановити молекулярні основи токсичності Se і резистентності клітин до нього. Значну кількість досліджень зазначеної проблеми здійснено на бактеріях. Можливість використання молекулярно-генетичних методів зробила дріжджі (в основному Saccharomyces cerevisiae) зручною модельною системою для вивчення механізмів резистентності еукаріотних клітин до селену на молекулярному рівні. Виходячи з цього в огляді підсумовано дані, особливо генетичні, щодо механізмів чутливості/резистентності дріжджів до селенових сполук.

Посилання

Nakamuro K, Okuno T, Hasegawa T. Metabolism of Selenoamino Acids and Contribution of Selenium Methylation to Their Toxicity. J Health Sci. 2000;46(6):418–21.

Lobinski R, Edmonds JS, Suzuki KT, Uden PC. Species-selective determination of selenium compounds in biological materials (Technical Report). Pure Appl Chem. 2000;72(3):447-61

Tam?s MJ, Wysocki R. Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet. 2001;40(1):2-12.

[http://www.nsc.org/library/chemical/selenium.htm].

Birringer M, Pilawa S, Floh? L. Trends in selenium biochemistry. Nat Prod Rep. 2002;19(6):693-718.

Schrauzer GN. Anticarcinogenic effects of selenium. Cell Mol Life Sci. 2000;57(13-14):1864-73.

K?hrl J, Brigelius-Floh? R, B?ck A, G?rtner R, Meyer O, Floh? L. Selenium in biology: facts and medical perspectives. Biol Chem. 2000;381(9-10):849-64.

Boles JO, Cisneros RJ, Weir MS, Odom JD, Villafranca JE, Dunlap RB. Purification and characterization of selenomethionyl thymidylate synthase from Escherichia coli: comparison with the wild-type enzyme. Biochemistry. 1991;30(46):11073-80.

Bernard AR, Wells TN, Cleasby A, Borlat F, Payton MA, Proudfoot AE. Selenomethionine labelling of phosphomannose isomerase changes its kinetic properties. Eur J Biochem. 1995;230(1):111-8.

Huber RE, Criddle RS. The isolation and properties of beta-galactosidase from Escherichia coli grown on sodium selenate. Biochim Biophys Acta. 1967;141(3):587-99.

Ip C. Lessons from basic research in selenium and cancer prevention. J Nutr. 1998;128(11):1845-54.

Snityns'ky? VV, Antoniak HL. [Biochemical role of selenium]. Ukr Biokhim Zh. 1994;66(5):3-16.

Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem. 2002;277(29):25983-91.

Golubev VI, Golubev NV. [Selenium tolerance of yeasts]. Mikrobiologiia. 2002;71(4):455-9.

Pinson B, Sagot I, Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol Microbiol. 2000;36(3):679-87.

Chaban L, Pokrovetska O, Stentchuk M, Gonchar M. Getting and physiological characteristics of selenite-resistant mutants of Pichia guilliermondii. Visn Lviv Univ (Biol Ser). 2003; (34):92-9.

McKeehan WL, Hamilton WG, Ham RG. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A. 1976;73(6):2023-7.

Turner RJ, Weiner JH, Taylor DE. Selenium metabolism in Escherichia coli. Biometals. 1998;11(3):223-7.

Kramer GF, Ames BN. Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res. 1988;201(1):169-80.

Reshetnikova IA, Petrikevich SB. [Luminescence microscopic detection of selenium in Candida tropicalis yeasts]. Mikrobiologiia. 1974;43(1):159-61.

Reshetnikova IA, Petrikevich SB. [Electron microscopic study of Candida tropicalis yeasts grown on a medium containing selenium]. Mikrobiologiia. 1975;44(3):556-8.

Gharieb MM, Gadd GM. Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals. 1998;11(2):101-6.

Chaban JL, Stenchuk M, Gonchar M. Genetic analysis of selenite-resistant mutants of the yeast Pichia guilliermondii. 1st Ukr. Congr. Cell Biol. (Lviv, April 25-28, 2004): Abstract. Lviv, 2004: 376.

Suhajda A, Heg?czki J, Janzs? B, Pais I, Vereczkey G. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol. 2000;14(1):43-7. PubMed PMID: 11966899.

Ponce de Le?n CA, Bay?n MM, Paquin C, Caruso JA. Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol. 2002;92(4):602-10.

Demirci A, Pometto AL 3rd. Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem. 1999;47(6):2491-5.

Demirci A, Pometto AL 3rd, Cox DJ. Enhanced organically bound selenium yeast production by fed-batch fermentation. J Agric Food Chem. 1999;47(6):2496-500.

Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125(1):71-8.

Bansal MP, Kaur T. Growth characteristics and selenium status changes of yeast cells with inorganic and organic selenium supplementation: selenium, a chemopreventive agent. J Med Food. 2002 Summer;5(2):85-90.

Yoshida M, Fukunaga K, Tsuchita H, Yasumoto K. An evaluation of the bioavailability of selenium in high-selenium yeast. J Nutr Sci Vitaminol (Tokyo). 1999;45(1):119-28.

Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements to growing fattening pigs. Zentralbl Veterinarmed A. 1998;45(9):551-7.

Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements for dairy cows. Zentralbl Veterinarmed A. 1997;44(6):373-80.

Ortman K, Pehrson B. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci. 1999;77(12):3365-70.

Knowles SO, Grace ND, Wurms K, Lee J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J Dairy Sci. 1999;82(2):429-37.

Rock MJ, Kincaid RL, Carstens GE. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rumin Res. 2001;40(2):129-138.

Bogye G, Alfthan G, Machay T. Bioavailability of enteral yeast-selenium in preterm infants. Biol Trace Elem Res. 1998;65(2):143-51.

Bogye G, Alfthan G, Machay T, Zubovics L. Enteral yeast-selenium supplementation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;78(3):F225-6.

Seo YR, Kelley MR, Smith ML. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A. 2002;99(22):14548-53.

Whanger PD. Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr. 2002;21(3):223-32.

Lu J, Jiang C, Kaeck M, Ganther H, Vadhanavikit S, Ip C, Thompson H. Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol. 1995;50(2):213-9.

Sinha R, Said TK, Medina D. Organic and inorganic selenium compounds inhibit mouse mammary cell growth in vitro by different cellular pathways. Cancer Lett. 1996;107(2):277-84.

Alaejos MS, D?az Romero FJ, D?az Romero C. Selenium and cancer: some nutritional aspects. Nutrition. 2000;16(5):376-83.

Rosin MP. Inhibition of spontaneous mutagenesis in yeast cultures by selenite, selenate and selenide. Cancer Lett. 1981;13(1):7-14.

Anjaria KB, Madhvanath U. Genotoxicity of selenite in diploid yeast. Mutat Res. 1988;204(4):605-14.

Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD. Protective effects of vitamins and selenium compounds in yeast. Mutat Res. 2001;496(1-2):105-15.

Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997;145(3):627-35.

Breton A, Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977;132(1):224-32.

Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995;92(20):9373-7.

Simonics T, B?nszky L, Mar?z A. Genetics of sulphate assimilation in Schizosaccharomyces pombe (a short review). Acta Microbiol Immunol Hung. 2002;49(2-3):279-83.

B?nszky L, Simonics T, Mar?z A. Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants. J Gen Appl Microbiol. 2003;49(5):271-8.

Casalone E, Colella CM, Ricci F, Polsinelli M. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulfate. Yeast. 1989; 5(Spec):287-91.

Casalone E, Colella CM, Daly S, Gallori E, Moriani L, Polsinelli M. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet. 1992;22(6):435-40.

Casalone E, Colella CM, Daly S, Fontana S, Torricelli I, Polsinelli M. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast. 1994;10(8):1101-10.

Breitwieser W, Price C, Schuster T. Identification of a gene encoding a novel zinc finger protein in Saccharomyces cerevisiae. Yeast. 1993;9(5):551-6.

Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet. 1994;25(6):488-96.

Avram D, Bakalinsky AT. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics. 1996;144(2):511-21.

Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 2000;16(10):881-8.

Park H, Lopez NI, Bakalinsky AT. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet. 1999;36(6):339-44.

S?-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol. 2002;98(2-3):215-26.

Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A. 1999;96(4):1486-91.

Flick JS, Johnston M. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol. 1991;11(10):5101-12.

62. Stratford M, Morgan P, Rose AH. Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. Microbiol. 1987;133(8):2173–9.

Bakalinsky AT, Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast. 1990;6(5):367-82.

Cod?n AC, Gasent-Ram?rez JM, Ben?tez T. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Appl Environ Microbiol. 1995;61(2):630-8.

Bidenne C, Blondin B, Dequin S, Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992;22(1):1-7.

Rachidi N, Barre P, Blondin B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999;261(4-5):841-50.

Puig S, Querol A, Barrio E, P?rez-Ort?n JE. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol. 2000;66(5):2057-61.

Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, et al. SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng. 1998;86(5):427–33.

P?rez-Ort?n JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 2002;12(10):1533-9.

Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004;5(12):R95.

Опубліковано

2006-01-20

Номер

Розділ

Огляди