Optimization of multibiosensor operation for inhibitory analysis of toxins

Authors

  • O. O. Soldatkin Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • O. S. Pavluchenko V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine 41, Prospect Nauki, Kyiv, Ukraine, 03028 Author
  • O. L. Kukla V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine 41, Prospect Nauki, Kyiv, Ukraine, 03028 Author
  • V. M. Arkhypova Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • S. V. Dzyadevych Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • O. P. Soldatkin Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author
  • A. V. El'skaya Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 Author

DOI:

https://doi.org/10.7124/bc.0007C2

Keywords:

multibiosensor, immobilized enzymes, pH-sensitive field-effecttransistors, inhibitory analysis, toxins

Abstract

The operation of highly sensitive and selective multibiosensor based on different immobilized enzymes as bioselective elements and the matrix of pH-sensitive field effect transistors as transducers has been investigated. To develop bioselective elements of multibiosensor, the enzymes acetylcholinesterase, butyryl-cholinesterase, urease, glucose oxidase, and three-enzyme system invertase-mutarotase-glucose oxidase with high sensitivity to toxins were used. The optimal concentrations of substrates for inhibitory analysis application were chosen as follows: 10 mM acetylcholine, 5 mM butyrylcholine, 5 mM urea, 5 mM sucrose, and 2 mM glucose. The incubation time of multibiosensor in toxic solution was 20 min. No cross-influence of substrates in all the enzyme systems used was found. The inhibitory influence of separate toxins and their mixture on the bioselective elements of multibiosensor was studied.

References

Soldatkin O. O., Sosovskaya O. F., Benilova I. V., Gonchar M. V., Korpan Y. I. Enzymatic conductometric sensor for formaldehyde detection in model samples. Biopolym. Cell. 2005; 21(5):425-432

Sosovskaya O. F., Pavlishko G. N., Paryzhak S. Ya., Gonchar M. V., Korpan Ya. I. Formaldehyde conductometric biosensor based on the recombinant formaldehyde dehydrogenase fromHansenula polymorpha yeast Biopolym. Cell. 2008; 24(2):135-141

Dzyadevych S. V., Mai Anh T., Soldatkin A. P., Duc Chien N., Jaffrezic-Renault N., Chovelon J.-M. Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds Bioelectrochemistry 2002 55:79–81.

Korpan Y. I., Gonchar M. V., Sibirny A. A., Martelet C., El'skaya A. V., Gibson T. D., Soldatkin A. P. Development of highly selective and stable potentiometric sensors for formaldehyde determination Biosensors and Bioelectronics 2000 15:77–83.

Berezhetskyy A. L., Durrieu C., Nguyen-Ngoc H., Chovelon J. -M., Dzyadevych S. V., Tran-Minh C. Conductometric biosensor based on whole-cell microalgae for assessment of heavy metals in wastewater. Biopolym. Cell. 2007; 23(6):511-518

Soldatkin A. P., Arkhypova V. N., Dzyadevych S. V., El'skaya A. V., Gravoueille J-M., Jaffrezic-Renault N., Martelet C. Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs Talanta 2005 66:28–33.

Dzyadevych S. V., Soldatkin A. P., Arkhypova V. N., El'skaya A. V., Chovelon J-M., Georgiou C. A., Martelet C., Jaffrezic-Renault N. Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition Sensors and Actuators B 2005 105:81–87.

Arkhypova V. N., Dzyadevych S. V., Soldatkin A. P., El'skaya A. V., Martelet C., Jaffrezic-Renault N. Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids Biosensors and Bioelectronics 2003 18:1047–1053.

Soldatkin O. O., V. M. Peshkova V. M., S. V. Dzyadevych S. V., A. P. Soldatkin A. P., A.V. El'skaya A.V. Three-enzyme conductometric biosensor for selective determination of heavy metal ions. Sensor Electronics and Microsystem Technologies. 2008; 2:48–57.

Arkhipova V. N., Dzyadevych S. V., Soldatkin A. P., El'skaya A. V., Jaffrezic-Renault N., Jaffresic H., Martlet C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances Talanta 2001 55:919–927.

Kukla A. L., Kanjuk N. I., Starodub N. F., Shirshov Yu. M. Multienzyme electrochemical sensor array for determination of heavy metal ions Sensors and Actuators B 1999 57:213–218.

Moreno L., Merlos A., Abramova N., Jimenez C., Bratov A. Multi-sensor array used as an «electronic tongue» for mineral water analysis Sensors and Actuators B 2006 116:130–134.

Touloupakisa E., Giannoudi L., Piletsky S. A., Guzzella L., Pozzoni F., Giardi M. T. A multi-biosensor based on immobilized Photosystem II on screen-printed electrodes for the detection of herbicides in river water Biosensors and Bioelectronics 2005 20:1984–1992.

Soldatkin O. O., Nazarenko O. A., Pavluchenko O. S., Kukla O. L., Arkhipova V. M., Dzyadevych S. V., Soldatkin O. P., El'skaya A. V. Optimization of enzymatic bioselective elements as components of potentiometric multibiosensor. Biopolym. Cell. 2008; 24(1):41-50

Dzyadevych S. V. Biosensors based on ion-selective field effect transistors: theory, technology, practice. Biopolym. Cell. 2004; 20(1-2):7-16

Published

2008-11-20

Issue

Section

Molecular and Cell Biotechnologies