Biopolym. Cell. 1990; 6(6):93-96.
Gene-Engineering Biotechnology
Nitrogen-fixing Klebsiella species produce indole-3-acetic acid
1Kozyrovskaya N. A., 1Makitruk V. L., 2Ruckdashell E.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR
  2. Lehrstuhl fur Genetik, Universitat Bayreuth


Nitrogen-fixing bacteria isolated from plant K. planticola and K. oxytoca were examined for their ability to produce indole compounds including the plant hormone indole-3-acetic acid. Indoles presented in culture filtrates were identified by thin-layer chromatography and quantitated by high-performance liquid chromatography. Bacteria produced IAA when liquid media were supplemented with L-tryptophan. Additional jndoles were found in culture filtrates: indole-3-lactic acid, indole-3-pyruvic acid, indole-3-acetaldehyde.


[1] Badenoch-Jones J, Summons RE, Entsch B, Rolfe BG, Parker CW, Letham DS. Mass spectrometric identification of indole compounds produced byRhizobium strains. Biol Mass Spectrom. 1982;9(10):429–37.
[2] Tien TM, Gaskins MH, Hubbell DH. Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetum americanum L.). Appl Environ Microbiol. 1979;37(5):1016-24.
[3] Hartmann A, Singh M, Klingmüller W. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid . Can J Microbiol. 1983;29(8):916–23.
[4] Lee M, Breckenridge C, Knowles R. Effect of some culture conditions on the production of indole-3-acetic acid and a gibberellin-like substance by Azotobacter vinelandii. Can J Microbiol. 1970;16(12):1325-30.
[5] Barea JM, Brown ME. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol. 1974;37(4):583-93.
[6] Nguen TK. Morphological and physiological peculiarities of blue-green algae Hapalosifon Jontinalis and the possibility of its use in enhancing crop yields: Author. dis. ... Kand. biol. Sci. Kyiv, 1987; 17 p.
[7] Gruen HE. Auxins and Fungi. Annu Rev Plant Physiol. 1959;10(1):405–40.
[8] Fett WF, Osman SF, Dunn MF. Auxin production by plant-pathogenic pseudomonads and xanthomonads. Appl Environ Microbiol. 1987;53(8):1839-45.
[9] Smidt M, Kosuge T. The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol. 1978;13(2):203–13.
[10] Liu ST, Perry KL, Schardl CL, Kado CI. Agrobacterium Ti plasmid indoleacetic acid gene is required for crown gall oncogenesis. Proc Natl Acad Sci U S A. 1982;79(9):2812-6.
[11] Offringa IA, Melchers LS, Regensburg-Tuink AJ, Costantino P, Schilperoort RA, Hooykaas PJ. Complementation of Agrobacterium tumefaciens tumor-inducing aux mutants by genes from the T(R)-region of the Ri plasmid of Agrobacterium rhizogenes. Proc Natl Acad Sci U S A. 1986;83(18):6935-9.
[12] Langridge WH, Fitzgerald KJ, Koncz C, Schell J, Szalay AA. Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci U S A. 1989;86(9):3219-23.
[13] Tang YW, Bonner J. The enzymatic inactivation of indoleacetic acid; some characteristics of the enzyme contained in pea seedlings. Arch Biochem. 1947;13(1):11-25.
[14] Miller JH. Experiments in molecular genetics. Cold Spring Harbor Laboratory, 1972, 466 p.
[15] Cannon FC, Dixon RA, Postgate JR, Primrose SB. Chromosomal Integration of Klebsiella Nitrogen Fixation Genes in Escherichia coli. J Gen Microbiol. 1974;80(1):227–39.
[16] Laboratory Manual for chromatographic and related techniques. Ed. O. Mikesh. Moscow, Mir, 1982; 396 p.
[17] Rigaud J. Indole-3-lactic acid and its metabolism by Rhizobium. Arch Mikrobiol. 1970;72(4):297-307.
[18] Schneider EA, Wightman F. Metabolism of Auxin in Higher Plants. Annu Rev Plant Physiol. 1974;25(1):487–513.
[19] Kosuge T, Heskett MG, Wilson EE. Microbial synthesis and degradation of indole-3-acetic acid. I. The conversion of L-tryptophan to indole-3-acetamide by an enzyme system from Pseudomonas savastanoi. J Biol Chem. 1966;241(16):3738-44.
[20] Van Onckelen H, Prinsen E, Inzé D, Rüdeisheim P, Van Lijsebettens M, Follin A, et al. Agrobacterium T-DNA gene 1 codes for tryptophan 2-monooxygenase activity in tobacco crown gall cells. FEBS Lett. 1986;198(2):357–60.
[21] Reynders L, Vlassak K. Conversion of tryptophan to indoleacetic acid by Azospirillum brasilense. Soil Biol Biochem. 1979;11(5):547–8.