Biopolym. Cell. 1990; 6(4):21-31.
Reviews
Development of the nonlinear conformational dynamics
1Volkov S. N.
  1. Institute for Theoretical Physics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

The critical analysis of the main directions of the theoretical investigations on nonlinear conformaiional DNA dynamics development is presented. The principal points in building correct models for studies of nonlinear dynamics of a DNA-type macromolecules are formulated. It is shown that with a definite correlation of the elastic constants soliton-type conformational excitations can move along DNA macromolecules.

References

[1] Hogan M, Dattagupta N, Crothers DM. Transmission of allosteric effects in DNA. Nature. 1979;278(5704):521-4.
[2] Mandal C, Kallenbach NR, Englander SW. Base-pair opening and closing reactions in the double helix. A stopped-flow hydrogen exchange study in poly(rA).poly(rU). J Mol Biol. 1979;135(2):391-411.
[3] Kamzolova SG, Postnikova GB. Spin-labelled nucleic acids. Q Rev Biophys. 1981;14(2):223-88.
[4] Banerjee A, Sobell HM. Presence of nonlinear excitations in DNA structure and their relationship to DNA premelting and to drug intercalation. J Biomol Struct Dyn. 1983;1(1):253-62.
[5] Crothers DM, Fried M. Transmission of long-range effects in DNA. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:263-9.
[6] Rich A. Right-handed and left-handed DNA: conformational information in genetic material. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:1-12.
[7] Edwards G, Davis C, Saffer J, Swicord M. Resonant Microwave Absorption of Selected DNA Molecules. Phys Rev Lett. 1984;53(13):1284–7.
[8] Luchnik AN. Long-distance signal transfer in transcriptionally active chromatin--how does it occur? Bioessays. 1985;3(6):249-52.
[9] Levitt M. Computer simulation of DNA double-helix dynamics. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:251-62.
[10] Englander SW, Kallenbach NR, Heeger AJ, Krumhansl JA, Litwin S. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc Natl Acad Sci U S A. 1980;77(12):7222-6.
[11] Yomosa S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys Rev A. 1983;27(4):2120–5.
[12] Takeno S, Homma S. Topological Solitons and Modulated Structure of Bases in DNA Double Helices: A Dynamic Plane Base-Rotator Model. Progr Theor Phys. 1983;70(1):308–11.
[13] Toyoki H, Yomosa S, Takeno S, Homma S. Commensurate, incommensurate and chaotic phase in DNA double helices. Physics Letters A. 1983;97(1-2):70–2.
[14] Homma S, Takeno S. A Coupled base-rotator model for structure and dynamics of DNA: local fluctuations in helical twist angles and topological solitons. Prog Theor Phys. 1984;72(4):679–93.
[15] Yomosa S. Solitary excitations in deoxyribonuclei acid (DNA) double helices. Phys Rev A. 1984;30(1):474–80.
[16] Fedyanin VK, Gochev I, Lisy V. Nonlinear dynamics of bases in a continual model of DNA double helices. Stud biophys. 1986; 116(1):59-64.
[17] Fedyanin VK, Lisy V. Soliton conformational excitations in DNA. Stud biophys. 1986; 116:65-71.
[18] Zhang CT. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys Rev A. 1987;35(2):886-891.
[19] Yakushevich LV. Nonlinear DNA dynamics: A new model. Phys Lett A 1989;136(7-8):413–7.
[20] Yakushevich LV, Fedyanin VK. Scattering of neutrons and light by DNA solitons. Stud biophys. 1984; 103(3):171-8.
[21] Balanovski E, Beaconsfield P. The role of nonlinear electric field effects and soliton formation and propagation in DNA function. Phys Lett A. 1982;93(1):52–4.
[22] Beaconsfield P, Balanovski E. Energy transfer in B-DNA: Mechanism and effects. Phys Lett A.1983;95(8):454–6.
[23] Giudice ED, Doglia S, Milani M. A collective dynamics in metabolically active cells. Phys Scr. 1982;26(3):232–8.
[24] Prohofsky EW. Solitons hiding in DNA and their possible significance in RNA transcription. Phys Rev A. 1988;38(3):1538-1541.
[25] Scott AC. Soliton oscillations in DNA. Phys Rev A. 1985;31(5):3518-3519.
[26] Scott AC. Anharmonic analysis of resonant microwave absorption in DNA. Phys Scr. 1985;32(6):617–23.
[27] Muto V, Halding J, Christiansen PL, Scott AC. Solitons in DNA. J Biomol Struct Dyn. 1988;5(4):873-94.
[28] Muto V, Scott AC, Christiansen PL. Thermally generated solitons in a toda lattice model of DNA. Phys Lett A. 1989;136(1-2):33–6.
[29] Krumhansl JA, Alexander DM. Nonlinear dynamics and conformational excitations in biomolecular materials. Structure and dynamics: nucleic acids and proteins. Eds. E. Clementi, R. H. Sarma. New York : Adenine press, 1983:61-80.
[30] Volkov SN. Nonlinear waves and conformational flexibility DNA. (Preprint Ukrainian Academy of Sciences. Inst theor. Physics; N 52R). Kyiv, 1984; 36 p.
[31] Sarai A. Stress-induced nonlinear structural transition in DNA. Phys Lett A. 1984;103(8):397–401.
[32] Volkov SN. On the possibility of propagation of nonlinear waves in DNA. Problems of Nonlinear and turbulent processes in physics. Kyiv, Naukova Dumka, 1985; Ch. 1:161-4.
[33] Volkov SN. On the dynamics of local conformational transitions in quasi-one-dimensional molecular systems. Kyiv, 1987; 27 p. (Preprint Ukrainian Academy of Sciences. Inst theor. Physics; N 76R).
[34] Arnott S, Hukins DW. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972;47(6):1504-9.
[35] Pardi A, Tinoco I Jr. Kinetics for exchange of imino protons in deoxyribonucleic acid, ribonucleic acid, and hybrid oligonucleotide helices. Biochemistry. 1982;21(19):4686-93.
[36] Guéron M, Kochoyan M, Leroy JL. A single mode of DNA base-pair opening drives imino proton exchange. Nature. 1987 Jul 2-8;328(6125):89-92.
[37] Preisler RS, Mandal Ch, Englander SW. et al. Equilibrium and kinetic characteristics of the low temperature open state in polynucleotide duplexes. Biomolecular sterodynamics. Ed. R. Sarma-New York: Adenine press, 1981:405-415.
[38] Davydov AS. Solitons in quasi-one-dimensional molecular structures. Usp fiz nauk. 1982; 138(4):603-43.
[39] Tsuboi M. Application of Infrared Spectroscopy to Structure Studies of Nucleic Acids. Applied Spectroscopy Reviews. 1970;3(1):45–90.
[40] Sukhorukov BI, Montrel MM. IR spectroscopic manifestation of crystallinity of DNA in films: Proc. of reports V Conf. spectroscopy for biopolymers. Kharkiv, 1984:227-228.
[41] Maleev VYa, Kashpur VA, Glibitsky GM, Krasnitskaya AA, Veretelnik YeV. Absorption of DNA solutions in the 9-12 GHz frequency range. Biopolym Cell. 1986; 2(1):35-8.
[42] Foster KR, Epstein BR, Gealt MA. "Resonances" in the dielectric absorption of DNA? Biophys J. 1987;52(3):421-5.
[43] Gabriel C, Grant EH, Tata R, Brown PR, Gestblom B, Noreland E. Microwave absorption in aqueous solutions of DNA. Nature. 1987 Jul 9-15;328(6126):145-6.
[44] Volkov SN, Kosevich AM. Conformation oscillations of DNA. Mol Biol (Mosk). 1987;21(3):797-806.
[45] Ivanov VI. Double helix DNA. Mol Biol (Mosk). 1983;17(3):616-21.
[46] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[47] Ivanov VI. B–A transition in DNA and transcription. Biopolym. Cell. 1985; 1(1):5-13.
[48] Bruce AD, Cowley RA. Structural phase transitions. London, Teylor & Francis, 1981; 326 p.
[49] Volkov SN. The mechanism of long-range DNA. Dopovidi akad nauk UkrSSR. 1988;(?):48-52.
[50] Dickson RC, Abelson J, Barnes WM, Reznikoff WS. Genetic regulation: the Lac control region. Science. 1975;187(4171):27-35.
[51] Ivanov VI, Zhurkin VB, Zavriev SK, Lysov YP, Minchenkova LE, Minyat EE, et al. Conformational possibilities of double-helical nucleic acids: Theory and experiment. Int J Quantum Chem. 1979;16(1):189–201.
[52] Volkov SN. Conformational transitions and the mechanism of transmission of long-range effects in DNA. Kiev (Preprint Acad. iSei. USSR. Inst. Theor. Phys.) 1988. 21 p.
[53] Volkov SN. Propagation of local conformational transitions in molecular chains. Phys Lett A. 1989;136(1-2):41–4.
[54] Krumhansl J, Schrieffer J. Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions. Phys Rev B. 1975;11(9):3535–45.
[55] Martel P, Powell BM. Measurement of acoustic modes of vibration in 1-methylthymine by neutron scattering. Chem Phys Lett. 1976;39(2):339–41.
[56] Frank-KamenetskiÄ­ MD. Fluctuational mobility of DNA. Mol Biol (Mosk). 1983;17(3):639-52.
[57] Maret G, Oldenbourg R, Winterling G, Dransfeld K, Rupprecht A. Velocity of high frequency sound waves in oriented DNA fibres and films determined by Brillouin scattering. Colloid Polym Sci. 1979;257(10):1017–20.
[58] Voet D, Rich A. The crystal structures of purines, pyrimidines and their intermolecular complexes. Prog Nucleic Acid Res Mol Biol. 1970;10:183-265.
[59] Lazurkin YuS. DNA: supercoiling and alternative structures. Biopolym. Cell. 1986; 2(6):283-92.