Biopolym. Cell. 1989; 5(4):14-23.
Simple DNA sequences in genomes of eukaryotes
1Ermak G. Z., 1Kartel N. A.
  1. Institute of Genetics and Cytology, Academy of Sciences of the Byelorussian SSR
    Minsk, USSR


Spreading of simple DNA sequences in genomes of different organisms as well as their localization, possible functions, origin and evolution are briefly considered. Those sequences are discussed for the possibility to participate in regulation of gene activity and recombinations. Probable mechanisms of simple sequences formation are shown. A conclusion is made that these sequences are not «selfish DNA» but are active and progressive elements.


[1] Gross DS, Garrard WT. The ubiquitous potential Z-forming sequence of eucaryotes, (dT-dG)n . (dC-dA)n, is not detectable in the genomes of eubacteria, archaebacteria, or mitochondria. Mol Cell Biol. 1986;6(8):3010-3.
[2] Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci U S A. 1982;79(21):6465-9.
[3] Pardue ML, Lowenhaupt K, Rich A, Nordheim A. (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 1987;6(6):1781-9.
[4] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984;12(10):4127-38.
[5] Vashakidze RP, Prangishvili DA. Sequences of Poly(dG-dT) • (dC-dA), 4 Poly(dG-dA) • (dC-dT), Poly(dG) • (dC) and Poly(dA) • (dT) in the Archaea genomes. Dokl Akad Nauk SSSR. 1987; 293(5):1243-5.
[6] Tautz D, Trick M, Dover GA. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986 Aug 14-20;322(6080):652-6.
[7] Greaves DR, Patient RK. (AT)n is an interspersed repeat in the Xenopus genome. EMBO J. 1985;4(10):2617-26.
[8] Tokarskaia ON, Dzhumanova ET, Kupriianova NS, Ivanov PL, Ryskov AP. Isolation and characteristics of cDNA clones containing simple (GT)n/(CA)n sequences of an animal genome. Mol Gen Mikrobiol Virusol. 1986;(9):24-9.
[9] Southern EM. DNA sequences and chromosome structure. J Cell Sci Suppl. 1984;1:31-41.
[10] Delseny M, Laroche M, Penon P. Detection of sequences with Z-DNA forming potential in higher plants. Biochem Biophys Res Commun. 1983;116(1):113-20.
[11] Wildeman AG, Rasquinha I, Nazar RN. A "CAT" family of repetitive DNA sequences in Saccharomyces cerevisiae. J Biol Chem. 1986;261(29):13401-3.
[12] Ali S, Muller CR, Epplen JT. DNA finger printing by oligonucleotide probes specific for simple repeats. Hum Genet. 1986;74(3):239-43.
[13] Sun L, Paulson KE, Schmid CW, Kadyk L, Leinwand L. Non-Alu family interspersed repeats in human DNA and their transcriptional activity. Nucleic Acids Res. 1984;12(6):2669-90.
[14] Kirchhoff C. GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Calliphoridae). Chromosoma. 1988;96(2):107-11.
[15] Levinson G, Marsh JL, Epplen JT, Gutman GA. Cross-hybridizing snake satellite, Drosophila, and mouse DNA sequences may have arisen independently. Mol Biol Evol. 1985;2(6):494-504.
[16] Singh L, Phillips C, Jones KW. The conserved nucleotide sequences of Bkm, which define Sxr in the mouse, are transcribed. Cell. 1984;36(1):111-20.
[17] Walmsley RM, Szostak JW, Petes TD. Is there left-handed DNA at the ends of yeast chromosomes? Nature. 1983;302(5903):84-6.
[18] Qasba PK, Safaya SK. Similarity of the nucleotide sequences of rat alpha-lactalbumin and chicken lysozyme genes. Nature. 1984 Mar 22-28;308(5957):377-80.
[19] Proudfoot NJ, Gil A, Maniatis T. The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell. 1982;31(3 Pt 2):553-63.
[20] Huijser P, Hennig W, Dijkhof R. Poly(dC dA. dG dT) repeats in the Drosophila genome: a key function for dosage compensation and position effects? Chromosoma. 1987;95(3):209–15.
[21] Epplen JT, McCarrey JR, Sutou S, Ohno S. Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc Natl Acad Sci U S A. 1982;79(12):3798-802.
[22] Nanda I, Neitzel H, Sperling K, Studer R, Epplen JT. Simple GATCA repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma. 1988;96(3):213-9.
[23] Lazurkin YuS. DNA: supercoiling and alternative structures. Biopolym Cell. 1986;2(6):283-92.
[24] Wang AH, Gessner RV, van der Marel GA, van Boom JH, Rich A. Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc Natl Acad Sci U S A. 1985;82(11):3611-5.
[25] Wilson WD, Zuo ET, Jones RL, Zon GL, Baumstark BR. Sequence dependent electrophoretic mobilities and melting temperatures for A-T containing oligodeoxyribonucleotides. Nucleic Acids Res. 1987;15(1):105-18.
[26] Behe M, Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981;78(3):1619-23.
[27] Santella RM, Grunberger D, Weinstein IB, Rich A. Induction of the Z conformation in poly(dG-dC).poly(dG-dC) by binding of N-2-acetylaminofluorene to guanine residues. Proc Natl Acad Sci U S A. 1981;78(3):1451-5.
[28] Sage E, Leng M. Conformation of poly(dG-dC) . poly(dG-dC) modified by the carcinogens N-acetoxy-N-acetyl-2-aminofluorene and N-hydroxy-N-2-aminofluorene. Proc Natl Acad Sci U S A. 1980;77(8):4597-601.
[29] Lafer EM, Moller A, Nordheim A, Stollar BD, Rich A. Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A. 1981;78(6):3546-50.
[30] Ramesh N, Shouche YS, Brahmachari SK. Recognition of B and Z forms of DNA by Escherichia coli DNA polymerase I. J Mol Biol. 1986;190(4):635-8.
[31] Haniford DB, Pulleyblank DE. The in-vivo occurrence of Z DNA. J Biomol Struct Dyn. 1983;1(3):593-609.
[32] Haniford DB, Pulleyblank DE. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 1985;13(12):4343-63.
[33] Mirkin SM, Dzhugey DE, Panyutin IG, Lyamichev VI. Detection cruciform structures in supercoiled plasmid DNA. Physico-chemical Properties of bioPolymers in solution and cells: Proc. of reports. Int. symp. Pushchino, 1985; 89.
[34] Vorlichkova M, Kipr I. DNA-X: a new conformation of poly (dA-dT) * Poly (dA-dT). 16th Conf. FEBO: Proc. of reports. Moscow, 1985; 522 P.
[35] Greaves DR, Patient RK, Lilley DM. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J Mol Biol. 1985;185(3):461-78.
[36] Rodriguez-Campos A, Ellison MJ, Pérez-Grau L, Azorin F. DNA conformation and chromatin organization of a d(CA/GT)30 sequence cloned in SV40 minichromosomes. EMBO J. 1986;5(7):1727-34.
[37] Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985;42(3):705-11.
[38] Razin A, Riggs AD. DNA methylation and gene function. Science. 1980;210(4470):604-10.
[39] Klysik J, Stirdivant SM, Singleton CK, Zacharias W, Wells RD. Effects of 5 cytosine methylation on the B-Z transition in DNA restriction fragments and recombinant plasmids. J Mol Biol. 1983;168(1):51-71.
[40] Auble DT, Allen TL, deHaseth PL. Promoter recognition by Escherichia coli RNA polymerase. Effects of substitutions in the spacer DNA separating the -10 and -35 regions. J Biol Chem. 1986;261(24):11202-6.
[41] Horbach E, Müller-Hill B. Insertion of d(pCpG)n.d(pCpG)n into the lacZ gene of Escherichia coli inhibits expression of beta-galactosidase in vivo. J Mol Biol. 1988;202(1):157-60.
[42] Olsen O. Analysis of the effect of dG·dC homopolymer tails on expression of a mouse α-amylase cDNA gene in yeast. Carlsberg Res Commun. 1987;52(1):91–7.
[43] Russell DW, Smith M, Cox D, Williamson VM, Young ET. DNA sequences of two yeast promoter-up mutants. Nature. 1983 Aug 18-24;304(5927):652-4.
[44] Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985;82(24):8419-23.
[45] Hayashi S, Kondoh H. In vivo competition of delta-crystallin gene expression by DNA fragments containing a GC box. Mol Cell Biol. 1986;6(11):4130-2.
[46] Banerjee R, Grunberger D. Enhanced expression of the bacterial chloramphenicol acetyltransferase gene in mouse cells cotransfected with synthetic polynucleotides able to form Z-DNA. Proc Natl Acad Sci U S A. 1986;83(14):4988-92.
[47] Sinden RR. Supercoiled DNA: Biological significance. J Chem Edu. 1987;64(4):294-301.
[48] Gellert M, Nash H. Communication between segments of DNA during site-specific recombination. Nature. 1987 Jan 29-Feb 4;325(6103):401-4.
[49] Umlauf SW, Cox MM. The functional significance of DNA sequence structure in a site-specific genetic recombination reaction. EMBO J. 1988;7(6):1845-52.
[50] Stringer JR. Recombination between poly[d(GT).d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol. 1985;5(6):1247-59.
[51] Murphy KE, Stringer JR. RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. Nucleic Acids Res. 1986;14(18):7325-40.
[52] Kmiec EB, Holloman WK. Homologous pairing of DNA molecules by Ustilago rec1 protein is promoted by sequences of Z-DNA. Cell. 1986;44(4):545-54.
[53] Klysik J, Stirdivant SM, Wells RD. Left-handed DNA. Cloning, characterization, and instability of inserts containing different lengths of (dC-dG) in Escherichia coli. J Biol Chem. 1982;257(17):10152-8.
[54] Blaho JA, Wells RD. Left-handed Z-DNA binding by the recA protein of Escherichia coli. J Biol Chem. 1987;262(13):6082-8.
[55] Rich A. Z-DNA and homologous genetic recombination. J. Cell. Biochem. 1988; Suppl. 12A:239.
[56] Singleton CK, Klysik J, Wells RD. Conformational flexibility of junctions between contiguous B- and Z-DNAs in supercoiled plasmids. Proc Natl Acad Sci U S A. 1983;80(9):2447-51.
[57] Suggs JW, Wagner RW. Nuclease recognition of an alternating structure in a d(AT)14 plasmid insert. Nucleic Acids Res. 1986;14(9):3703-16.
[58] Panayotatos N, Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J Biol Chem. 1987;262(23):11364-8.
[59] Richards JE, Gilliam AC, Shen A, Tucker PW, Blattner FR. Unusual sequences in the murine immunoglobulin mu-delta heavy-chain region. Nature. 1983 Dec 1-7;306(5942):483-7.
[60] Kim S, Davis M, Sinn E, Patten P, Hood L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell. 1981;27(3 Pt 2):573-81.
[61] Nishioka Y, Leder P. Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. J Biol Chem. 1980;255(8):3691-4.
[62] Hochtl J, Zachau HG. A novel type of aberrant recombination in immunoglobulin genes and its implications for V-J joining mechanism. Nature. 1983 Mar 17-23;302(5905):260-3.
[63] Gebhard W, Zachau HG. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes. J Mol Biol. 1983;170(2):567-73.
[64] Cohen JB, Effron K, Rechavi G, Ben-Neriah Y, Zakut R, Givol D. Simple DNA sequences in homologous flanking regions near immunoglobulin VH genes: a role in gene interaction? Nucleic Acids Res. 1982;10(11):3353-70.
[65] Nikaido T, Nakai S, Honjo T. Switch region of immunoglobulin Cmu gene is composed of simple tandem repetitive sequences. Nature. 1981;292(5826):845-8.
[66] Mellor AL, Weiss EH, Kress M, Jay G, Flavell RA. A nonpolymorphic class I gene in the murine major histocompatibility complex. Cell. 1984;36(1):139-44.
[67] Tautz D, Renz M. Simple DNA sequences of Drosophila virilis isolated by screening with RNA. J Mol Biol. 1984;172(2):229-35.
[68] Hentschel CC. Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature. 1982;295(5851):714-6.
[69] Burd JF, Wells RD. Effect of incubation conditions on the nucleotide sequence of DNA products of unprimed DNA polymerase reactions. J Mol Biol. 1970;53(3):435-59.
[70] Wells RD, Ohtsuka E, Khorana HG. Studies on polynucleotides. L. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: a new double-stranded DNA-like polymer containing repeating dinucleotide sequences. J Mol Biol. 1965;14(1):221-37.
[71] Hamada H, Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature. 1982;298(5872):396-8.
[72] Emerson BM, Lewis CD, Felsenfeld G. Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult beta-globin gene: nature of the binding domain. Cell. 1985;41(1):21-30.
[73] Gebhard W, Zachau HG. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes. J Mol Biol. 1983;170(2):567-73.
[74] Rogers J. Molecular biology. CACA sequences - the ends and the means? Nature. 1983 Sep 8-14;305(5930):101-2.
[75] Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191(4227):528-35.
[76] Devos R, Tavernier J, Fiers W. Slippage of DNA polymerase I during synthesis of ds-cDNA. Nucleic Acids Res. 1988;16(4):1630.
[77] Fuchs RPP, Freunds AM, Bichara M. The role of DNA structure in frameshift mutagenesis. J Cell Biochem. 1988. suppl. 12A:630.
[78] Levinson G, Gutman GA. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 1987;15(13):5323-38.
[79] Walsh JB. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987;115(3):553-67.
[80] Marx JL. Instability in Plants and the Ghost of Lamarck: The repetitive DNA sequences in the plant genome make a major contribution to genetic instability and variability in plants. Science. 1984;224(4656):1415-6.