Biopolym. Cell. 2019; 35(2):129-142.
Bioorganic Chemistry
Spectroscopic study of binding of a cationic Pheophorbide-a to an antiparallel quadruplex Tel22
1Ryazanova O. A., 1Zozulya V. N., 1Voloshin I. M., 1Glamazda A. Yu., 2Dubey I. Ya., 2Dubey L. V., 1Karachevtsev V. A.
  1. B. I. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine
    47, Prospekt Nauky, Kharkiv, Ukraine, 61103
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. To study the binding of a water-soluble cationic Pheophorbide-a derivative (CatPheo-a) ta a Na+–stabilized antiparallel quadruplex formed by 22-mer oligonucleotide d[AG3(T2AG3)3] of the human DNA telomeric sequence (Tel22, PDB ID: 143D). Methods. Absorption and polarized fluorescence spectroscopy were used to determine the properties of DNA–ligand complexes. Fluorescence titration was applied to evaluate the Tel22 dye binding affinity. Absorption melting was used to estimate the effect of CatPheo-a on thermodynamic parameters of the Tel22 quadruplex folding. IR spectroscopy was used to detect singlet oxygen generation . Results. CatPheo-a was found to bind effectively to the Tel22 quadruplex via two competitive binding modes, which are characterized by opposite changes in the dye fluorescence. The spectroscopic properties of CatPheo-a + Tel22 complexes were determined. Thermodynamic parameters of the Tel22 quadruplex folding with/without CatPheo-a were calculated. Conclusions. CatPheo-a destabilizes the quadruplex structure of Tel22 with a two-fold decrease in the equilibrium quadruplex folding constant at 37°C. The efficiency of singlet oxygen generation by CatPheo-a is higher than that by the anionic Pheo-a.
Keywords: Pheophorbide-a, Tel22 quadruplex, polarized fluorescence, absorption, melting, thermodynamic parameters

References

[1] Rabinowitch E. Spectra of porphyrins and chlorophyll. Rev Mod Phys. 1944; 16(3-4): 226–35.
[2] Gouterman M. Spectra of porphyrins. J Mol Spectrosc. 1961; 6: 138–63.
[3] Photodynamic Medicine: From Bench to Clinic (Comprehensive Series in Photochemical & Photobiological Sciences, vol. 15. Eds. H Kostron and T Hasan, 1st edn Cambridge, UK: RSC, 2016. 650 p.
[4] Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297-307.
[5] Wang KK, Li J, Kim BJ, Lee JH, Shin HW, Ko SH, Lee WY, Lee CH, Jung SH, Kim YR. Photophysical properties of pheophorbide-a derivatives and their photodynamic therapeutic effects on a tumor cell line in vitro. Int J Photoenerg. 2014 (2014):793723.
[6] Yano S, Hirohara S, Obata M, Hagiya Y, Ogura S, Ikeda A, Kataoka H, Tanaka M, Joh T. Current states and future views in photodynamic therapy. J Photochem Photobiol C: Photochem Rev. 2011; 12(1): 46–67.
[7] Krasnovsky AA Jr, Neverov KV, Egorov SYu, Roeder B, Levald T. Photophysical studies of pheophorbide a and pheophytin a. Phosphorescence and photosensitized singlet oxygen luminescence. J Photochem Photobiol B. 1990;5(2):245-54.
[8] Ryazanova O, Voloshin I, Dubey I, Dubey L, Zozulya V. Fluorescent studies on cooperative binding of cationic pheophorbide-a derivative to polyphosphate. Ann N Y Acad Sci. 2008;1130:293-9.
[9] Ryazanova OA, Voloshin IM, Dubey IYa, Dubey LV, Zozulya VN. Spectroscopic studies on binding of cationic Pheophorbide-a derivative to model polynucleotides. IFMBE Proc. 2008; 20: 397–400.
[10] Hänsel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18(5):279-284.
[11] Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43(18):8627-37.
[12] Chambers VS, Marsico G, Boutell JM, Di Antonio M, Smith GP, Balasubramanian S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat Biotechnol. 2015;33(8):877-81.
[13] Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012;13(11):770-80.
[14] Neidle S. Quadruplex Nucleic Acids as Novel Therapeutic Targets. J Med Chem. 2016;59(13):5987-6011.
[15] Maji B, Bhattacharya S. Advances in the molecular design of potential anticancer agents via targeting of human telomeric DNA. Chem Commun (Camb). 2014;50(49):6422-38.
[16] Negrutska VV, Dubey LV, Ilchenko MM, Dubey IY. Design and study of telomerase inhibitors based on G-quadruplex ligands. Biopolym Cell. 2013; 29(3): 169–76.
[17] TRAPeze® Telomerase Detection Kit.– Temecula, CA, USA: Chemicon International, 2005. 39 p.
[18] Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1(4):263-82.
[19] Monchaud D, Teulade-Fichou M-P. G4-FID: a fluorescent DNA probe displacement assay for rapid evaluation of quadruplex ligands. In: P. Baumann (Ed.) G-Quadruplex DNA: Methods and Protocols. New York: Humana Press, 2010: 257-71.
[20] Zozulya V, Blagoi Y, Löber G, Voloshin I, Winter S, Makitruk V, Shalamay A. Fluorescence and binding properties of phenazine derivatives in complexes with polynucleotides of various base compositions and secondary structures. Biophys Chem. 1997;65(1):55-63.
[21] Zozulya VN, Ryazanova OA, Voloshin IM, Glamazda AY, Karachevtsev VA. Spectroscopic detection of tetracationic porphyrin H-aggregation on polyanionic matrix of inorganic polyphosphate. J Fluoresc. 2010;20(3):695-702.
[22] Lakowicz JR. Principles of Fluorescent Spectroscopy, 3rd ed. New York: “Springer”, 2006; 954 p.
[23] Mergny JL, Phan AT, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435(1):74-8.
[24] Shkirman SF, Solov’ev KN, Kachura TF, Arabei SA, Skakovskii ED. Interpretation of the Soret band of porphyrins based on the polarization spectrum of N-methyltetraphenylporphin fluorescence. J Appl Spectrosc. 1999; 66(1): 68–75.
[25] Gouterman M, Stryer L. Fluorescence polarization of some porphyrins. J Chem Phys. 1962; 37: 2260–6.
[26] Gurinovich GP, Sevchenko AN, Solov’ev KN. The spectroscopy of porphyrins. Sov Phys Usp. 1963; 6(1): 67–105.
[27] Roeder B, Wabnitz H. Time-resolved fluorescence spectroscopy of hematoporphyrin, mesoporphyrin, pheophorbide a and chlorin e6 in ethanol and aqueous solution. J Photochem Photobiol B. 1987;1(1):103-13.
[28] Mansouri S, Fery-Forgues S, Meunier B, Paillons N. Organization processes of a pyropheophorbide-spermidine conjugate in the presence or absences of DNA. J Chem Soc Perkin Trans. 2 1996; (8): 1649–54.
[29] Eichwurzel I, Stiel H, Röder B. Photophysical studies of the pheophorbide a dimer. J Photochem Photobiol B. 2000;54(2-3):194-200.
[30] Zeug A, Zimmermann J, Röder B, Lagorio MG, San Román E. Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water. Photochem Photobiol Sci. 2002;1(3):198-203.
[31] Pasternack RF, Gibbs EJ, Villafranca JJ. Interactions of porphyrins with nucleic acids. Biochemistry. 1983;22(23):5409-17.
[32] Fiel RJ. Porphyrin-nucleic acid interactions: a review. J Biomol Struct Dyn. 1989;6(6):1259-74. Review.
[33] Schwarz G, Klose S, Balthasar W. Cooperative binding to linear biopolymers. 2. Thermodynamic analysis of the proflavine-poly(L-glutamic acid) system. Eur J Biochem. 1970;12(3):454-60.
[34] Schwarz G, Balthasar W. Cooperative binding to linear biopolymers. 3. Thermodynamic and kinetic analysis of the acridine orange-poly(L-glutamic acid) system. Eur J Biochem. 1970;12(3):461-7.
[35] Zozulya VN, Ryazanova OA, Voloshin IM, Dubey LV, Dubey IYa. Spectroscopic studies on binding of porphyrin–phenazine conjugate to intramolecular G-quadruplex formed by 22-mer oligonucleotide. Int Rev Biophys Chem. 2011; 2(4): 112–9.
[36] Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ, Yatsunyk LA. Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J Am Chem Soc. 2012;134(50):20446-56.
[37] Ryazanova OA, Voloshin IM, Dubey LV, Zozulya VN. Spectroscopic study of pheophorbide-a methyl ether binding to synthetic polynucleotides and DNA. Biophys. Bull. 2009; 23 (2): 20–9.
[38] Ryazanova O, Zozulya V, Voloshin I, Glamazda A, Dubey I, Dubey L, Karachevtsev V. Interaction of a tricationic meso-substituted porphyrin with guanine-containing polyribonucleotides of various structures. Methods Appl Fluoresc. 2016;4(3):034005.
[39] Ryazanova O, Zozulya V, Voloshin I, Dubey L, Dubey I, Karachevtsev V. Binding of Metallated Porphyrin-Imidazophenazine Conjugate to Tetramolecular Quadruplex Formed by Poly(G): a Spectroscopic Investigation. J Fluoresc. 2015;25(6):1897-904.
[40] Marky LA, Breslauer KJ. Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers. 1987;26(9):1601-20.
[41] Mergny JL, Phan AT, Lacroix L. Following G-quartet formation by UV-spectroscopy. FEBS Lett. 1998;435(1):74-8.
[42] Dutikova YV, Borisova OF, Shchyolkina AK, Lin J, Huang S, Shtil AA, Kaluzhny DN. 5,10,15,20–Tetra–(N–methyl–3–pyridyl)porphyrin destabilizes the antiparallel telomeric quadruplex d(TTAGGG)4. Mol Biol. 2010; 44(5): 823–31.
[43] Morris MJ, Wingate KL, Silwal J, Leeper TC, Basu S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012;40(9):4137-45.
[44] Weisman-Shomer P, Cohen E, Hershco I, Khateb S, Wolfovitz-Barchad O, Hurley LH, Fry M. The cationic porphyrin TMPyP4 destabilizes the tetraplex form of the fragile X syndrome expanded sequence d(CGG)n. Nucleic Acids Res. 2003;31(14):3963-70.
[45] Rubio-Magnieto J, Di Meo F, Lo M, Delcourt C, Clément S, Norman P, Richeter S, Linares M, Surin M. Binding modes of a core-extended metalloporphyrin to human telomeric DNA G-quadruplexes. Org Biomol Chem. 2015;13(8):2453-63.
[46] Gray RD, Li J, Chaires JB. Energetics and kinetics of a conformational switch in G-quadruplex DNA. J Phys Chem B. 2009;113(9):2676-83.