Biopolym. Cell. 2017; 33(3):183-205.
Bioorganic Chemistry
Investigation of anticancer and anti-parasitic activity of thiopyrano[2,3-d]thiazoles bearing norbornane moiety
1Kryshchyshyn A. P., 1, 2Atamanyuk D. V., 1Kaminskyy D. V., 3Grellier Ph., 1Lesyk R. B.
  1. Danylo Halytsky Lviv National Medical University
    69, Pekarska Str., Lviv, Ukraine, 79010
  2. Emanine Ltd
    23, A. Matrosova Str., Kyiv, Ukraine, 01103
  3. National Museum of Natural History, UMR 7245 CNRS MCAM, Sorbonne Universités
    CP 52, 57 Rue Cuvier, Paris 75005, France


Aim. To study anticancer activity of a series of new thiopyrano[2,3-d]thiazoles with a norbornane fragment in the molecules. The search for trypanocidal properties of target compounds. Methods. Organic synthesis, analytical and spectral methods, pharmacological screening, COMPARE and SAR analysis. Results. Fused thiopyrano[2,3-d]thiazoles bearing the norbornane moiety were synthesized and modified at the C9 and N5 positions of the main core in order to obtain the compounds with a satisfactory pharmacological profile. A number of compounds with significant level of cancer cells growth inhibition were identified; they include a hit-compound N1-(4-chlorophenyl)-2-{2-[6-oxo-5,9-dithia-7-azatetracyclo [,10.04,8]tetradec-4(8)-en-3-yl]phenoxy}acetamide IId that selectively inhibited Leukemia cell lines at submicromolar concentrations. Moreover, a series of thiopyrano[2,3-d]thiazoles showed a moderate antitrypanosomal activity. Conclusions. New thiopyrano[2,3-d]thiazoles with the norbornane fragment as well as their analogues with different substituents at the N5 and C9 position were designed and synthesized. The compounds showed significant levels of anticancer activity towards the selected cancer cell lines and may be used for further optimization. The compounds with a high antitumor activity inhibited the growth of Trypanosoma brucei brucei in in vitro tests. The combined anticancer and antitrypanosomal effect of compounds is the basis for further modification and search for a possible mode of action of the target compounds.
Keywords: Thiopyrano[2,3-d]thiazoles, norbornane, synthesis, anticancer activity, anti-trypanosomal activity, SAR.


[1] Lesyk R, Zimenkovsky B, Atamanyuk D, Jensen F, Kieć-Kononowicz K, Gzella A. Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorg Med Chem. 2006; 14(15):5230-40.
[2] Atamanyuk D, Zimenkovsky B, Lesyk R. Synthesis and anticancer activity of novel thiopyrano[2,3-d]thiazole-based compounds containing norbornane moiety. J Sulf Chem. 2008; 29(2):151-62.
[3] Zelisko N, Atamanyuk D, Ostapiuk Y, Bryhas A, Matiychuk V, Gzella A, Lesyk R. Synthesis of fused thiopyrano[2,3-d][1,3]thiazoles via hetero-Diels-Alder reaction related tandem and domino processes. Tetrahedron, 2015; 71(50):9501-8.
[4] Kaminskyy D, Vasylenko O, Atamanyuk D, Gzella A, Lesyk R. Isorhodanine and thiorhodanine motifs in the synthesis of fused thiopyrano[2,3-d][1,3]thiazoles. Synlett. 2011; 10:1385-88.
[5] Kryshchyshyn A, Atamanyuk D, Lesyk R. Fused thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci Pharm. 2012; 80(3):509-29.
[6] Atamanyuk D, Zimenkovsky B, Atamanyuk V, Nektegayev I, Lesyk R. Synthesis and biological activity of new thiopyrano[2,3-d]thiazoles containing a naphthoquinone moiety. Sci Pharm. 2013; 81(2):423-36.
[7] Reginato M, Bailey S, Krakow S, Minami C, Ishii S, Tanaka H, Lazar M. A potent antidiabetic thiazolidinedione with unique peroxisome proliferator-activated receptor gamma activating properties. J Biol Chem. 1998; 273(49):32679–84.
[8] Kador P, Kinoshita J, Sharpless N. Aldose reductase inhibitors: a potential new class of agents for the pharmacological control of certain diabetic complications. J Med Chem. 1985; 28(7):841-9.
[9] Charlier C, Mishaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur J Med Chem. 2003; 38(7–8):645-59.
[10] Herrmann W, Satzinger G, Herrmann M, Steinbrecher W, Bahrmann H. (+)-(3-Methyl-4-oxo-5N-piperidinothiazolidin-2-ylidene)acetic acid esters, method of preparation and use, Patent No. 4,255,433, 1981.
[11] Löscher W, Hodenberg A, Nolting B, Fassbender CP, Taylor C. Ralitoline: a reevaluation of anticonvulsant profile and determination of "active" plasma concentrations in comparison with prototype antiepileptic drugs in mice. Epilepsia. 1991; 32(4):560-8.
[12] Mendgen T, Steuer C, Klein C. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry, J Med Chem. 2012; 55(2):743-53.
[13] Senkiv J, Finiuk N, Kaminskyy D, Havrylyuk D, Wojtyra M, Kril I, Gzella A, Stoika R, Lesyk R. 5-Ene-4-thiazolidinones induce apoptosis in mammalian leukemia cells. Eur J Med Chem. 2016; 117:33-46.
[14] Baell J, Holloway G. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010; 53(7):2719-40.
[15] Baell J, Walters MA. Chemical con artists foil drug discovery. Nature, 2014; 513(7519):481-3.
[16] Atamanyuk D, Zimenkovsky B, Atamanyuk V, Lesyk R. 5-Ethoxymethylidene-4-thioxo-2-thiazolidinone as versatile building block for novel biorelevant small molecules with thiopyrano[2,3-d][1,3]thiazole core. Synth Commun. 2014; 44(2):237-44.
[17] Kryshchyshyn A, Zimenkovsky B, Lesyk R. Synthesis and anticancer activity in vitro of isothiochromeno[3,4-d]thiazole derivarives. Annales UMCS. 2008; XXI(1):247-51.
[18] Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem. 2014; 85:51-64.
[19] Kryshchyshyn A, Kaminskyy D, Zelisko N, Khyluk D, Grellier Ph, Lesyk R. The study of the antityrpanosomal activity of thiazolidinones and related heterocyclic systems. J Org Pharm Chem. 2013; 11(2):57-62.
[20] Zelisko N, Atamanyuk D, Vasylenko O, Grellier P, Lesyk R. Synthesis and antitrypanosomal activity of new 6,6,7-trisubstituted thiopyrano[2,3-d][1,3]thiazoles. Bioorg Med Chem Lett. 2012; 22(23):7071-4.
[21] Lozynskyi A, Kaminskyy D, Romanchyshyn K, Semenciv N, Ogurtsov V, Nektegayev I, Lesyk R. Screening of antioxidant and anti-inflammatory activities among thiopyrano[2,3-d]thiazoles. Biopolym Cell. 2015; 31(2):131-7.
[22] Lesyk R, Zimenkovsky B, Kaminskyy D, Kryshchyshyn A, Havryluk D, Atamanyuk D, Subtel'na I, Khyluk D. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolym Cell. 2011; 27(2):107-17.
[23] Kaminskyy D, Kryshchyshyn A, Nektegayev I, Vasylenko O, Grellier P, Lesyk R. Isothiocoumarin-3-carboxylic acid derivatives: synthesis, anticancer and antitrypanosomal activity evaluation. Eur J Med Chem. 2014; 75:57-66.
[24] Steverding D, Wang X. Trypanocidal activity of the proteasome inhibitor and anti-cancer drug bortezomib. Parasit Vectors. 2009; 2(1):29.
[25] Deterding A, Dungey F, Thompson K, Steverding D. Anti-trypanosomal activities of DNA topoisomerase inhibitors. Acta Tropica. 2005; 93(3):311-6.
[26] Kaminskyy D, Zimenkovsky B, Lesyk R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur J Med Chem. 2009; 44(9):3627-36.
[27] Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991; 83:757-66.
[28] Boyd M, Paull K. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995; 34:91-109.
[29] Boyd MR. The NCI In Vitro Anticancer Drug Discovery Screen. In: Teicher B.A. (Ed.), Cancer Drug Discovery and Development, Vol. 2, Humana Press, Totowa, New York, 1997:23-43.
[30] Lethu S, Bosc D, Mouray E, Grellier P, Dubois J. New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by solid-phase synthesis. J Enzyme Inhib Med Chem. 2013; 28(1):163-71.
[31] Pérez-Cruz F, Serra S, Delogu G, Lapier M, Diego Maya J, Olea-Azar C, Santana L, Uriarte E. Antitrypanosomal and antioxidant properties of 4-hydroxycoumarins derivatives. Bioorg Med Chem Lett. 2012; 22(17):5569-73.
[32] Matiychuk V, Lesyk R, Obushak M, Gzella A, Atamanyuk D, Ostapiuk Y, Kryshchyshyn A. A new domino-Knoevenagel–hetero-Diels–Alder reaction. Tetrahedron Lett. 2008; 49(31):4648-51.
[33] Zhou H, Wu S, Zhai S, Liu A, Sun Y, Li R, Zhang Y, Ekins S, Swaan P, Fang B, Zhang B, Yan B. Design, synthesis, cytoselective toxicity, structure–activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells. J Med Chem. 2008; 51(5):1242–51.
[34] Wu S, Guo W, Teraishi F, Pang J, Kaluarachchi K, Zhang L, Davis J, Dong F, Yan B, Fang B. Anticancer activity of 5-benzylidene-2-phenylimino-1,3-thiazolidin-4-one (BPT) analogs. Med Chem. 2006; 2(6):597–605.
[35] Kaminskyy D, Bednarczyk-Cwynar B, Vasylenko O, Kazakova O, Zimenkovsky B, Zaprutko L, Lesyk R. Synthesis of new potential anticancer agents based on 4-thiazolidinone and oleanane scaffolds. Med Chem Res. 2012; 21(11):3568-80.
[36] Bhat B, Ponnala S, Sahu D, Tiwari P, Tripathi B, Srivastava A. Synthesis and antihyperglycemic activity profiles of novel thiazolidinedione derivatives. Bioorg Med Chem. 2004; 12(22):5857-64.
[37] Shoemaker R. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006; 6(10):813-23
[38] Zaharevitz DW, Holbeck SL, Bowerman C, Svetlik PA. COMPARE: a web accessible tool for investigating mechanisms of cell growth inhibition. J Mol Graphics Model. 2002; 20(4):297–303.
[39] Havrylyuk D, Zimenkovsky B, Vasylenko O, Zaprutko L, Gzella A, Lesyk R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem. 2009; 44(4):1396–404.
[40] Subtel'na I, Atamanyuk D, Szyman´ska E, Kiec´-Kononowicz K, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg Med Chem. 2010; 18(14):5090–102.