Biopolym. Cell. 2015; 31(1):38-45.
Biomedicine
Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses
1Tkach I. R., 1Sosnina K. O., 1Huleyuk N. L., 1Terpylyak O. I., 1Zastavna D. V., 2Weise A., 2Kosyakova N., 2Liehr T.
  1. State Institution "Institute of Hereditary Pathology, NAMS of Ukraine"
    31a, M. Lysenko Str., Lviv, Ukraine, 79008
  2. Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics,
    Kollegiengasse 10, D-07743 Jena, Germany

Abstract

Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL). The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.
Keywords: pregnancy loss, chromosome abnormalities, cytogenetics, mFISH, chromosome, HLA-genotyping

References

[1] Katz VL. Spontaneous and recurrent abortion: etiology, di­agnosis, treatment. In: Comprehensive Gynecology. Eds Lentz GM, Lobo RA, Gershenson DM. 6th ed. Philadelphia, PA: Elsevier Mosby; 2012; chap 16.
[2] Mohangoo AD, Blondel B, Gissler M, Velebil P, Macfarlane A, Zeitlin J; Euro-Peristat Scientific Committee. International comparisons of fetal and neonatal mortality rates in high-income countries: should exclusion thresholds be based on birth weight or gestational age? PLoS One. 2013;8(5):e64869.
[3] Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368(9535):601-11.
[4] Stirrat GM. Recurrent miscarriage. Lancet. 1990;336(8716):673-5.
[5] Farcas S, Belebgeanu V, Popa C, Stolcanescu D, Stolan M, Veliscu M, Furau G, Craina M, Munteanu. Role of chromosomal translocations in recurrent spontaneous abortion. Timisoara Medical Journal. 2007; 57(2–3):117–21.
[6] Balakhonov AV. Mistakes in development. Leningrad: Ed. Lenengrad Univ. 1990. 278 p.
[7] Yudina EV Trisomy 18: an analysis of 28 cases of prenatal diagnosis. Prenatalnaya Diagnostika. 2002; 1(1): 35–42.
[8] Delhanty JD, Handyside AH. The origin of genetic defects in the human and their detection in the preimplantation embryo. Hum Reprod Update. 1995;1(3):201-15.
[9] Goddijn M, Leschot NJ. Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14(5):855-65.
[10] Baranov VS, Kuznetsova TV. Cytogenetics of human embryonic development. Saint Petersburg.: N-L. 2007; 170–209.
[11] Kim JW, Lee WS, Yoon TK, Seok HH, Cho JH, Kim YS, Lyu SW, Shim SH. Chromosomal abnormalities in spontaneous abortion after assisted reproductive treatment. BMC Med Genet. 2010;11:153.
[12] Franssen MT, Musters AM, van der Veen F, Repping S, Leschot NJ, Bossuyt PM, Goddijn M, Korevaar JC. Reproductive outcome after PGD in couples with recurrent miscarriage carrying a structural chromosome abnormality: a systematic review. Hum Reprod Update. 2011;17(4):467-75.
[13] Shearer BM, Thorland EC, Carlson AW, Jalal SM, Ketterling RP. Reflex fluorescent in situ hybridization testing for unsuccessful product of conception cultures: a retrospective analysis of 5555 samples attempted by conventional cytogenetics and fluorescent in situ hybridization. Genet Med. 2011;13(6):545-52.
[14] Yurov YB, Vorsanova SG, Soloviev IV, Demidova IA, Alexandrov IA, Sharonin VO, Beresheva AK. Original collection of DNA probes for preimplantational, fetal prenatal and postnatal diagnosis of chromosomal analysis by FISH. In: Early prenatal diagnosis, fetal cells and DNA in mother. Present state and perspectives. Eds. Ma­cek M, Bianchi D, Cuckle H. Prague: The Carolinum Press. 2002; 275–83.
[15] Tavokina LV, Brovko AA, Sopko IaA, Baronova EV. [Karyotyping results of spontaneous abortions and miscarriages specimens obtained after using assisted reproductive technologies]. Tsitol Genet. 2013;47(1):74-9.
[16] Tavokina LV, Sopko NI, Khazhilenko KG, Baronova EV. [Molecular-cytogenetic study of the aborted fetuses in women with reproductive function disorders]. Tsitol Genet. 2006;40(2):72-8.
[17] Diego-Alvarez D, Ramos-Corrales C, Garcia-Hoyos M, Bustamante-Aragones A, Cantalapiedra D, Diaz-Recasens J, Vallespin-Garcia E, Ayuso C, Lorda-Sanchez I. Double trisomy in spontaneous miscarriages: cytogenetic and molecular approach. Hum Reprod. 2006;21(4):958-66.
[18] Vorsanova SG, Iourov IY, Kolotii AD, Beresheva AK, Demidova IA, Kurinnaya OS, Kravets VS, Monakhov VV, Soloviev IV, Yurov YuB. Chromosomal mosaicism in spontaneous abortions: Analysis of 650 cases. Russian Journal of Genetics. 2010;46(10):1197–200.
[19] Gardner RJM, Sutherland GR, Shaffer LG. Chromosome abnormalities and genetic counselling. Oxford University Press. 2011; 61. 4th ed. 648 p.
[20] Pflueger SM. Cytogenetics of spontaneous abortions. In: The principles of cytogenetics. Eds Gersen SI, Keagle MB. Humana Press. Totowa. New Jersey. USA. 2005; 323–45.
[21] Jobanputra V, Sobrino A, Kinney A, Kline J, Warburton D. Multiplex interphase FISH as a screen for common aneuploidies in spontaneous abortions. Hum Reprod. 2002;17(5):1166-70.
[22] Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R. High resolution multicolor fluorescence in situ hybridization using cyanine and fluorescein dyes: rapid chromosome identification by directly fluorescently lab­led alphoid DNA probes. Hum Genet. 1996;97(3):390–8.
[23] Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17(2):413-9.
[24] Aruna M, Nagaraja T, Andal Bhaskar S, Tarakeswari S, Reddy AG, Thangaraj K, Singh L, Reddy BM. Novel alleles of HLA-DQ and -DR loci show association with recurrent miscarriages among South Indian women. Hum Reprod. 2011;26(4):765-74.
[25] Sipak-Szmigiel O, Ronin-Walknowska E, Mik?aszewicz A, Do?ubeczko A, Zejmo M, Giedrys-Kalemba S. [Association between HLA-DQA1, HLA-DQB1 alleles and risk of early pregnancy loss]. Ginekol Pol. 2007;78(10):792-5.
[26] Takakuwa K, Adachi H, Hataya I, Ishii K, Tamura M, Tanaka K. Molecular genetic studies of HLA-DRB1 alleles in patients with unexplained recurrent abortion in the Japanese population. Hum Reprod. 2003;18(4):728-33.
[27] Beydoun H, Saftlas AF. Association of human leucocyte antigen sharing with recurrent spontaneous abortions. Tissue Antigens. 2005;65(2):123-35.
[28] Varla-Leftherioti M, Keramitsoglou T, Spyropoulou-Vlachou M, Papadimitropoulos M, Kontopoulou-Antonopoulou V, Tsekoura C, Sankarkumar U, Paparistidis N, Ghosh K, Pawar A, Vrani V, Daniilidis M, Parapanissiou E, Diler AS, Carin M, Stavropoulos-Giokas C. 14th International HLA and Immunogenetics Workshop: report from the reproductive immunology component. Tissue Antigens. 2007;69 Suppl 1:297-303.
[29] Baranov VS. [A method of shaking-blotting--a simple and reliable means for obtaining direct chromosomal preparations from chorionic biopsies]. Tsitologiia. 1989;31(2):251-3.
[30] Liehr T, Pellestor F. Molecular cytogenetics: the standard FISH and PRINS procedure. In: Fluorescence in situ hybridization (FISH) – application guide Ed. Liehr T. Springer-Verlag, Berlin Heidelberg. 2009; 23–34.
[31] Moghraby JS, Tamim H, Anacan V, Al Khalaf H, Moghraby SA. HLA sharing among couples appears unrelated to idiopathic recurrent fetal loss in Saudi Arabia. Hum Reprod. 2010;25(8):1900-5.
[32] Terpylyak OI, Sosnina KO, Zastavna DV, Helner NV, Mikula MI. The distribution of allelic variants of genes HLA-DRB1, HLA-DQA1, HLA-DQB1 and HLA-G among wo­men with idiopathic recurrent pregnancy loss. Biopolym Cell. 2013; 29(5):413–7.
[33] Kruse C, Steffensen R, Varming K, Christiansen OB. A study of HLA-DR and -DQ alleles in 588 patients and 562 controls confirms that HLA-DRB1*03 is associated with recurrent miscarriage. Hum Reprod. 2004;19(5):1215-21.
[34] Takakuwa K, Honda K, Yokoo T, Hataya I, Tamura M, Tanaka K. Molecular genetic studies on the compatibility of HLA class II alleles in patients with unexplained recurrent miscarriage in the Japanese population. Clin Immunol. 2006;118(1):101-7.
[35] Shankarkumar U, Pawar A, Gaonkar P, Parasannavar D, Salvi V, Ghosh K. HLA allele associations in idiopathic recurrent spontaneous abortion patients from India. J Hum Reprod Sci. 2008;1(1):19-24.
[36] Steck T, van der Ven K, Kwak J, Beer A, Ober C. HLA-DQA1 and HLA-DQB1 haplotypes in aborted fetuses and couples with recurrent spontaneous abortion. J Reprod Immunol. 1995;29(2):95-104.
[37] Wang XP, Lin QD, Lu PH, Ma ZW, Zhao AM. Association of HLA-DQB1 coding region with unexplained recurrent spontaneous abortion. Chin Med J (Engl). 2004;117(4):492-7.
[38] Lin Q, Lu P, Wang X. [The study on human leucocyte antigen DQ region genes polymorphism in unexplained habitual abortion patients]. Zhonghua Fu Chan Ke Za Zhi. 2001;36(5):293-5.