Biopolym. Cell. 2014; 30(4):286-290.
Molecular and Cell Biotechnologies
Tissue engineering of vascular/valvular equivalents on the base of the xenogeneic decellularized matrix
1Savchuk M. V.
  1. State Instituton «Institute of urgent and recovery surgery named after V. K. Gusak, National Academy of Medical Science of Ukraine»
    47, Leninskyi Ave., Donetsk, Ukraine, 83045


According to the WHO, in 2008 cardiovascular diseases claimed the lives of 17.5 million people (30 % of all diseases). Often the only option to save a patient’s life is a replacing the injured part of an organ by the prosthesis. Aim. This research was aimed to produce biomodificated cardiovascular graft by decellularisation of porcine heart valve. Methods. Our method of decellularization permits to make morphologically and physically non-modified decellularised extracellular matrix. Results. The analysis of matrix shows a decrease of the total number of cells, preservation of the collagen and elastin fibers structure, and safety of physiological adhesion. Conclusions. The matrix can be used as a framework for the vessel-valvular tissue-engineering prosthesis after its recellularization by the recipient’s autologous cells.
Keywords: tissue engineering, extracellular matrix, decellularization


[1] Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr. Functional living trileaflet heart valves grown in vitro. Circulation. 2000;102(19 Suppl 3):III44-9.
[2] Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21(22):2215-31.
[3] Schmidt D, Hoerstrup SP. Tissue engineered heart valves based on human cells. Swiss Med Wkly. 2006;136(39-40):618-23.
[4] Schmidt D, Stock UA, Hoerstrup SP. Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1505-12.
[5] Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E, Weigel G, Simon P. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. 2006;15(2):278–86
[6] Klopsch C, Steinhoff G. Tissue-engineered devices in cardiovascular surgery. Eur Surg Res. 2012;49(1):44-52.
[7] Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR, Pethig K, Haverich A, Bader A. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation. 2000;102(19 Suppl 3):III50-5.
[8] Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet. 2012;379(9819):943-52.
[9] Lopes SA, Costa FD, Paula JB, Dhomen P, Phol F, Vilani R, Roderjan JG, Vieira ED. Decellularized heterografts versus cryopreserved homografts: experimental study in sheep model. Rev Bras Cir Cardiovasc. 2009;24(1):15-22.
[10] Van Nooten G, Somers P, Cornelissen M, Bouchez S, Gasthuys F, Cox E, Sparks L, Narine K. Acellular porcine and kangaroo aortic valve scaffolds show more intense immune-mediated calcification than cross-linked Toronto SPV valves in the sheep model. Interact Cardiovasc Thorac Surg. 2006;5(5):544-9.
[11] Popandopulo AG, Petrova MV. Acellular matrix as a substrate for tissue-engineered graft of heart valve. Cell and organ transplantology. 2013; 1(1):52–55.
[12] Grauss RW, Hazekamp MG, van Vliet S, Gittenberger-de Groot AC, DeRuiter MC. Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg. 2003;126(6):2003–10.
[13] Rieder E, Seebacher G, Kasimir MT, Eichmair E, Winter B, Dekan B, Wolner E, Simon P, Weigel G. Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation. 2005;111(21):2792-7.
[14] Tomazic BB, Edwards WD, Schoen FJ. Physicochemical characterization of natural and bioprosthetic heart valve calcific deposits: implications for prevention. Ann Thorac Surg. 1995;60(2 Suppl):S322-7.
[15] Rosanova IB, Mischenko BP, Zaitsev VV, Vasin SL, Sevastianov VI. The effect of cells on biomaterial calcification: experiments with in vivo diffusion chambers. J Biomed Mater Res. 1991;25(2):277-80.
[16] Akatov BC, Fesenko NI, Solov'ev VV, Fadeeva IE, Chekanov AV, Muratov RM, Britikov DV, Sachkov AS. Inhibition of calcification of heart valves’ transplants by their devitalization. Kletochnaja transplantalogija i tkanevaja inzhenerija. 2010; (1):41–46.
[17] Korzhevskij D, Giljarov A. Fundamentals of histological techniques. SPb: SpecLit, 2010; 95 p.
[18] Kumar GL, Rudbeck L. Education Guide: Immunohistochemical Staining Methods: Pathology. Dako North America, 2009;162 p.
[19] Popandopulo AG, Ignatov DJu, Slipchenko IO, Vasil'ev RG, Merkulova EV, Gerasimov IG. Effect of culturing factors on viability of fetal human fibroblasts. Vestnyk Neotlozhnoy i Vosstanovitelnoy Meditsyny. 2003; 4(2): 323–5.
[20] Eghbali M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol. 1992;87 Suppl 2:183-9.
[21] Hannun YA, Obeid LM. Ceramide and the eukaryotic stress response. Biochem Soc Trans. 1997;25(4):1171-5.
[22] Weedon D, Searle J, Kerr JF. Apoptosis. Its nature and implications for dermatopathology. Am J Dermatopathol. 1979 Summer;1(2):133-44.
[23] Robinson KA, Li J, Mathison M, Redkar A, Cui J, Chronos NA, Matheny RG, Badylak SF. Extracellular matrix scaffold for cardiac repair. Circulation. 2005;112(9 Suppl):I135-43.
[24] Ross M, Wojciech P. Histology: A Text and Atlas. Lippincott Williams & Wilkins, 2010; 235–241.