Biopolym. Cell. 2014; 30(1):71-73.
Short Communications
DNA import competence and mitochondrial genetics
1Weber-Lotfi F., 1, 2Mileshina D. V., 1, 3Ibrahim N., 1, 2, 3Koulintchenko M. V., 4D'Souza G. G. M., 4Saxena V., 2Konstantinov Yu. M., 3Lightowlers R. N., 1Dietrich A.
  1. Institute of Plant Molecular Biology, CNRS and University of Strasbourg (UdS)
    12, General Zimmer Str., Strasbourg, France, 67084
  2. Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences
    132, Lermontova Str., Irkutsk, Russian Federation, 664033
  3. Institute for Cell and Molecular Biosciences, Medical School, Newcastle University
    Framlington Place, Newcastle upon Tyne, UK, NE2 4HH
  4. School of Pharmacy - Boston, MCPHS University
    179, Longwood Ave., Boston, USA, MA 02115


Aim. To understand the mechanism(s) underlying mitochondrial competence for DNA uptake and to exploit these pathways for the development of in vivo models of gene therapy. Methods. DNA uptake into isolated mitochondria from plant or from mutant Saccharomyces cerevisiae defective for mitochondrial proteins and carriers, biochemical approaches and transfection of mammalian cells with DNA bound to mitochondriotropic liposomes. Results. Special focus on the inner membrane showed the involvement of isoforms of the adenine nucleotide translocator and the contribution of proteins controlling mitochondrial morphology in DNA uptake into yeast organelles. Transfection assays led to significant incorporation of a mitochondrial construct into mammalian cells and expression of a marker gene. Conclusions. The data imply that there are multiple mitochondrial DNA import pathways. On the other hand, preliminary results suggest that mitochondriotropic liposomes can deliver DNA to mitochondria in live mammalian cells.
Keywords: mitochondria, DNA import, mitochondrial transfection, plant, Saccharomyces cerevisiae, mammal


[1] Koulintchenko M., Konstantinov Y., Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 2003; 22(6):1245–1254.
[2] Koulintchenko M., Temperley R. J., Mason P. A., Dietrich A., Lightowlers R. N. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum. Mol. Genet 2006; 15(1):143–154.
[3] Ibrahim N., Handa H., Cosset A., Koulintchenko M., Konstantinov Y., Lightowlers R. N., Dietrich A., Weber-Lotfi F. DNA delivery to mitochondria: sequence specifity and energy enhancement. Pharm. Res 2011; 28(11): 2871–2882.
[4] Boesch P., Ibrahim N., Paulus F., Cosset A., Tarasenko V., Dietrich A. Plant mitochondria possess a short-patch base excision DNA repair pathway. Nucleic Acids Res 2009; 37(17): 5690–5700.
[5] Boesch P., Ibrahim N., Dietrich A., Lightowlers R. N. Membrane association of mitochondrial DNA facilitates base excision repair in mammalian mitochondria. Nucleic Acids Res 2010; 38(5):1478–1488.
[6] Mileshina D., Koulintchenko M., Konstantinov Y., Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res 2011; 39(17):e115.
[7] Weber-Lotfi F., Ibrahim N., Boesch P., Cosset A., Konstantinov Y., Lightowlers R. N., Dietrich A. Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim. Biophys. Acta 2009; 1787(5):320–327.
[8] Boddapati S. V., Tongcharoensirikul P., Hanson R. N., D'Souza G. G., Torchilin V. P., Weissig V. Mitochondriotropic liposomes. J. Liposome Res 2005; 15(1–2):49–58.