Biopolym. Cell. 1987; 3(6):283-289.
Structure and Function of Biopolymers
Interaction between EcoRII restriction/modification enzymes and synthetic DNA fragments. Synthesis of substrates containing a single recognition site
1Kuznetsova S. A., 1Kubareva E. A., 1Oretskaya T. S., 2Dolinnaya N. G., 1Krynetskaya N. F., 1Gromova E. S., 1Shabarova Z. A., 2Cech D.
  1. M. V. Lomonosov State University
    Moscow, USSR
  2. A. Humboldt University
    Berlin, GDR

Abstract

9-16 membered oligodeoxyribonucleotides forming DNA-duplexes with one EcoRII site (native or modified) were synthesized by the block triester method. The modifications involved the replacement of one (or two) cytidine or thymidine moieties in duplexes for m5dC or f5dU, respectively. 30-membered DNA-duplex was obtained by enzymatic ligation of five overlapping oligonucleotides. The substitutions introduced neither result in any significant destabilization nor distort the double helix geometry as is evidenced by the UV- and CD,-spectroscopy methods.

References

[1] Gromova ES, Vinogradova MN, Elov AE, VeÄ­ko VP, Dolinnaia NG. DNA-like duplexes containing repetitive sequences. VIII. Synthesis and properties of DNA fragments--substrates of restriction endonuclease EcoRII. Mol Biol (Mosk). 1984;18(2):370-81.
[2] Yolov AA, Gromova ES, Kubareva EA, Potapov VK, Shabarova ZA. Interaction of EcoRII restriction and modification enzymes with synthetic DNA fragments. V. Study of single-strand cleavages. Nucleic Acids Res. 1985;13(24):8969-81.
[3] Yolov AA, Vinogradova MN, Gromova ES, Rosenthal A, Cech D, Veiko VP, Metelev VG, Kosykh VG, Buryanov YI, Bayev AA, et al. Interaction of EcoRII restriction and modification enzymes with synthetic DNA fragments. VI. The binding and cleavage of substrates containing nucleotide analogs. Nucleic Acids Res. 1985;13(24):8983-98.
[4] Gryaznova OI, Dolinnaya NG, Isagulyants MG, Metelev VG, Oretskaya TS, Udalov NI, Sokolova NI, Shabarova ZA.Studies of synthesis and thermal stability of oligodesoxyribonucleotide duplexes with structural anomalies. Russian Journal of Bioorganic Chemistry. 1986; 12(1):124-32.
[5] Narang SA. DNA-synthesis. Tetrahedron. 1983; 39(1):3-22.
[6] Rosenthal A, Cech D, Veiko VP, Orezkaja TS, Romanova EA, Elov AA, Metelev VG, Gromova ES, Shabarova ZA. Chemische synthese von nonadesoxyribonucleotiden mit den abgewandelten basen uracil, 5-bromuracil und 5-methylcytosin nach dem triester-verfahren. Tetrahedron Lett. 1984; 25(39):4353-4356.
[7] Shabarova ZA, VeÄ­ko VP, Dolinnaia NG, Drutsa VL, Metelev VG. Chemical reactions in double-stranded nucleic acids. III. Synthesis of terminal inverted repeats of the IS1 element. Bioorg Khim. 1987;13(5):628-42.
[8] Veiko VP, Oretskaya TS, Volkov EM, Metelev VG, Romanova EA, Potapov VK. Synthesis of oligodeoxyribonucleotides containing a 3'-terminal phosphate group. Him prir soed. 1984; 20(5):601-5.
[9] Oretskaya TS, Kubareva EA, Gryaznov SM, Lomakin AI, Potapov VK. Changes in the synthesis order of oligodeoxyrhibonucleotides on Viktoriya-2 and Viktoriya-4M synthesizing machines. Him prir soed. 1987; 1:153-55.
[10] Rosenthal A, Schubert F, Cech D, Orezkaja TS, Kusnezova SA, Shabarova ZA. Chemical synthesis, isolation and sequencing of tetradecadeoxyribonucleotides containing the modified bases 5-fluorouracil and 5-methylcytosine. Biomed Biochim Acta. 1985;44(10):K75-83.
[11] Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977;74(2):560-4.
[12] Kremer AB, Mikita T, Beardsley GP. Chemical consequences of incorporation of 5-fluorouracil into DNA as studied by NMR. Biochemistry. 1987;26(2):391-7.
[13] Fujii S, Wang AH, van der Marel G, van Boom JH, Rich A. Molecular structure of (m5 dC-dG)3: the role of the methyl group on 5-methyl cytosine in stabilizing Z-DNA. Nucleic Acids Res. 1982;10(23):7879-92.
[14] Marck C, Guschlbauer W. A simple method for the computation of first neighbour frequencies of DNAs from CD spectra. Nucleic Acids Res. 1978;5(6):2013-31.
[15] Shakked Z, Rabinovich D, Kennard O, Cruse WB, Salisbury SA, Viswamitra MA. Sequence-dependent conformation of an A-DNA double helix. The crystal structure of the octamer d(G-G-T-A-T-A-C-C). J Mol Biol. 1983;166(2):183-201.
[16] Benevides JM, Wang AH, Rich A, Kyogoku Y, van der Marel GA, van Boom JH, Thomas GJ Jr. Raman spectra of single crystals of r(GCG)d(CGC) and d(CCCCGGGG) as models for A DNA, their structure transitions in aqueous solution, and comparison with double-helical poly(dG).poly(dC). Biochemistry. 1986;25(1):41-50.