Biopolym. Cell. 2013; 29(6):511-514.
Bioorganic Chemistry
Lepidine Orange derivative as a new dye for sensitive fluorescent detection of DNA
1Didan Yu. V., 2Kryvorotenko D. V., 2Negrutska V. V., 2Dubey I. Ya.
  1. Educational and Scientific Center "Institute of Biology",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Aim. To study new cyanine dye LO-7 as a reagent for dsDNA visualization in electrophoretic gels. Methods. Gel electrophoresis, restriction, fluorescence detection, mobility shift assay. Results. LO-7 binds to DNA to form stable highly fluorescent complexes. As little as 80 pg DNA can be detected in LO-7-stained agarose gel using a laser scanner, and 0.3 ng with UV-transilluminator. This sensitivity is several times higher than can be achieved with ethidium bromide, and close to that of SYBR Green I. Conclusions. LO-7 belongs to the most efficient stains for dsDNA visualization and thus can be used in bioanalytical applications where high sensitivity is required.
Keywords: fluorescent dyes, cyanines, gel electrophoresis, nucleic acids, detection

References

[1] Kricka L. J. Stains, labels and detection strategies for nucleic acids assays Ann. Clin. Biochem 2002 39, Pt 2:114–129.
[2] Haughland R. P. The Handbook – a guide to fluorescent probes and labeling technologies / 10th ed Eugene: Molecular Probes, 2005 1126 p.
[3] Goncalves M. S. Fluorescent labeling of biomolecules with organic probes Chem. Rev 2009 109, N 1:190–212.
[4] Su X., Xiao X., Zhang C., Zhao M. Nucleic acid fluorescent probes for biological sensing Appl. Spectroscop 2012 66, N 11:1249–1262.
[5] Deligeorgiev T. G., Kaloyanova S., Vaquero J. J. Intercalating cyanine dyes for nucleic acid detection Rec. Pat. Mater. Sci 2009 2, N 1:1–26.
[6] Yarmoluk S., Kovalska V., Losytskyy M. Symmetric cyanine dyes for detecting nucleic acids Biotech. Histochem 2008 83, N 3:131–145.
[7] Levitus M., Ranjit S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments Q. Rev. Biophys 2011 44, N 1:123–151.
[8] Tatikolov A. S. Polymethine dyes as spectral-fluorescent probes for biomacromolecules J. Photochem. Photobiol. C 2012 13, N 1:55–90.
[9] Nygren J., Svanvik N., Kubista M. The interaction between the fluorescent dye thiazole orange and DNA Biopolymers 1998 46, N 1:39–51.
[10] Zipper H., Brunner H., Bernhagen J., Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications Nucleic Acids Res 2004 32, N 12:e103.
[11] Trantakis I. A., Fakis M., Tragoulias S. S., Christopoulos Th. K., Persephonis P., Giannetas V., Ioannou P. Ultrafast fluorescent dynamics of Sybr Green I/DNA complexes Chem. Phys. Lett 2010 485, N 1–3:187–190.
[12] Kryvorotenko D. V., Kostenko O. M., Negrutska V. V., Didan Yu. V., Kolotiuk I. S., Dubey I. Ya. New benziimidazole and quinoline derivatives as topoisomerase I inhibitors: synthesis and biological activity Annual session of the program «Fundamental problems of the development of new substances and materials for chemical industry»: Abstracts book (Kyiv, December 20, 2012) Kyiv, 2012:66–67.
[13] Benson S., Singh P., Glazer A. Heterodimeric DNA-binding dyes designed for energy transfer: synthesis and spectroscopic properties Nucleic Acids Res 1993 21, N 24:5727–5735.