Biopolym. Cell. 2013; 29(5):375-381.
Structure and Function of Biopolymers
Early detection and group-specific identification of Mycobacterium tuberculosis strains by method of single-nucleotide polymorphism analysis with hairpin primers
1Cherednyk Yu. O., 2Anopryenko O. V., 3Gorovenko N. G., 1Feschenko Yu. I.
  1. National Institute of Phthisiology and Pulmonology named after F. G. Yanovskiy, NAMS
    10, M. Amosova Str., Kyiv, Ukraine, 03680
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  3. P. L. Shupik National medical academy of post-graduate education
    9, Dorohozhytska Str., Kyiv, Ukraine, 04112


Aim. Based on the method of single-nucleotide polymorphism (SNP) determination with hairpin primers to perform a differential identification in clinical material of M. tuberculosis (Mtb) strains, which belong to the 1st or 2/3 principal genotypic groups (PGG), with the aim of shortening the terms of tuberculosis diagnosing and early detection of most clinically and epidemiologically-significant strains. Methods. PCR with the SNP-specific hairpin primers to group-specific SNP katG463, and statistical analysis of clinical/epidemiological categories of the patients were used for study of sputum clinical samples from patients with pulmonary tuberculosis living in Kyiv. Results. PCR system of differential group-specific detection of Mtb in clinical samples using hairpin primers to SNP katG463 effectively detected Mtb in 47.8 % of samples of which 57.6 % were strains of the PGG-1 and 42.4 % – PGG-2/3. The association between belonging to the PGG-1 and resistance to iso- niazid (OR [95 % CI], 5.417 [1.196–24.522] P = 0.0283) and to any of the first-line drugs (rifampicin/isoniazid) (OR [95 % CI], 7.00 [1.493– 32.82] P = 0.014) was revealed. Conclusions. SNP-analysis with hairpin SNP-specific primers to locus katG463 of Mtb strains group membership in clinical material allows effective detection of epidemiologically-important PGG-1 strains.
Keywords: SNP, Mycobacterium tuberculosis, katG, PCR-diagnostics, tuberculosis


[1] Gutacker M. M., Smoot J. C., Migliaccio C. A., Ricklefs S. M., Hua S., Cousins D. V., Graviss E. A., Shashkina E., Kreiswirth B. N., Musser J. M. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains Genetics 2002 162, N 4 P. 1533– 1543.
[2] Waterfall C. M., Cobb B. D. Single tube genotyping of sickle cell anaemia using PCR-based SNP analysis Nucleic Acids Res 2001 29, N 23 E119.
[3] Bergval I. L., Vijzelaar R. N., Dalla Costa E. R., Schuitema A. R., Oskam L., Kritski A. L., Klatser P. R., Anthony R. M. Development of multiplex assay for rapid characterization of Mycobacterium tuberculosis J. Clin. Microbiol 2008 46, N 2:689– 699.
[4] Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS) Nucleic Acids Res 1989 17, N 7 P. 2503–2516.
[5] Hazbon M. H., Alland D. Hairpin primers for simplified singlenucleotide polymorphism analysis of Mycobacterium tuberculosis and other organisms J. Clin. Microbiol 2004 42, N 3 P. 1236–1242.
[6] Kruuner A., Hoffner S. E., Sillastu H., Danilovits M., Levina K., Svenson S. B., Ghebremichael S., Koivula T., Kallenius G. Spread of drug-resistant pulmonary tuberculosis in Estonia J. Clin. Microbiol 2001 39, N 9:3339–3345.
[7] Sreevatsan S., Pan X., Zhang Y., Deretic V., Musser J. M. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities Antimicrob. Agents Chemother 1997 41, N 3:600–606.
[8] Toungoussova O. S., Sandven P., Mariandyshev A. O., Nizovtseva N. I., Bjune G., Caugant D. A. Spread of drug-resistant Mycobacterium tuberculosis strains of the Beijing genotype in the Archangel oblast, Russia J. Clin. Microbiol 2002 40, N 6 P. 1930–1937.
[9] Asmolov O. K., Nikolayevskyy V. V., Kresyun V. Y., Bazhora Yu. I., Filyuk V. V., Lobanov O. K. Mycobacterium tuberculosis drug resistance in Odessa oblast of Ukraine and risk factors for drug resistant tuberculosis transmission: results of two year prospective study Ukrainian Pulmonology J 2005 N 2:8–15.
[10] Cherednyk Yu. O., Anopriyenko O. V., Gorovenko N. G., Feschenko Yu. I. Assessment of genetic markers for early detection of Mycobacterium tuberculosis strains resistant to anti-TB drugs Visn. Ukr. Soc. of Geneticists and Selectionists 2013 11, N 3 P. 144–152.
[11] Dymova M. A., Liashenko O. O., Poteiko P. I., Krutko V. S., Khrapov E. A., Filipenko M. L. Genetic variation of Mycobacterium tuberculosis circulating in Kharkiv Oblast, Ukraine BMC Infect. Dis 2011 11:77.
[12] Streicher E. M., Victor T. C., van der Spuy G., Sola C., Rastogi N., van Helden P. D., Warren R. M. Spoligotype signatures in the Mycobacterium tuberculosis complex J. Clin. Microbiol 2007 45, N 1:237–240.
[13] Fenner L., Malla B., Ninet B., Dubuis O., Stucki D., Borrell S., Huna T., Bodmer T., Egger M., Gagneux S. «Pseudo-Beijing»: evidence for convergent evolution in the direct repeat region of Mycobacterium tuberculosis PLoS One 2011 6, N 9 e24737.
[14] Huard R. C., Fabre M., de Haas P., Lazzarini L. C., van Soolingen D., Cousins D., Ho J. L. Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex J. Bacteriol 2006 188, N 12:4271–4287.
[15] Kong Y., Cave M. D., Zhang L., Foxman B., Marrs C. F., Bates J. H., Yang Z. H. Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: Insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates J. Clin. Microbiol 2007 45, N 2:409–414.
[16] Norkina O. V., Kinsht V. N., Mokrousov I. V., Kurunov Iu. N., Krasnov V. A., Filipenko M. L. The genetic diversity of Mycobacterium tuberculosis and an assessment of risk factors of tuberculosis spread in Russia's Siberian region by molecular epidemiological methods Mol. Gen. Mikrobiol. Virusol 2003 N 3:9–18.
[17] Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination Proc. Natl Acad. Sci. USA 1997 94, N 18:9869–9874.