Biopolym. Cell. 2013; 29(5):357-366.
The areas of application for plant lectins
1Melnykova N. M., 1Mykhalkiv L. M., 1Mamenko P. M., 1Kots S. Ya.
  1. Institute of Plant Physiology and Genetics, NAS of Ukraine
    31/17, Vasylkivska, Kyiv, Ukraine, 03022


Lectins, in particular from plants, are proteins of non-immune origin that are able to bind carbohydrates with high specificity. Due to their properties, phytolectins are of great interest in practical applications. They were shown to play an important role in forming strategies for treatment of disease including cancer and HIV. Plant lectins are an important tool in glycomic studies. Plant lectins with fungicidal and insecticidal activities are used in transgenic technologies to increase plant resistance to pests and phytopathogens. The introduction of lectin-like kinases genes into plant genome was shown to be perspective way to protect plants against environmental stresses and regulate plant growth. Engineering of phytolectins allows obtaining molecules with known carbohydrate specificity that can be applied in various areas. The studies are underway with the aim of design of lectin-based drug delivery systems as well as the pharmaceutical drugs containing plant lectins. Because of the ability of phytolectins to bind to different substances they can be more widely used in the future. The review focuses on current data and future possibilities in the application of plant lectins.
Keywords: plant lectins, biotechnology, glycome analysis, biomedical research, agriculture


[1] Lutsyk M. D., Panasyuk E. N., Lutsyk A. D. Lectins Lviv: Vyscha Shkola, 1984 155 p.
[2] Antonyuk V. O. Lectins and their stock sources Lviv: Kvart, 2005 554 p.
[3] Kovalchuk N. V., Melnykova N. M., Musatenko L. I. Role of phytolectins in the life cycle of plants Biopolym. Cell 2012 28, N 3:171–180.
[4] Imberty A., Gautier C., Lescar J., Perez S., Wyns L., Loris R. An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosacchrides J. Biol. Chem 2000 275, N 23:17541–17548.
[5] Schlick K. H., Udelhoven R. A., Strohmeyer G. C., Cloninger M. J. Binding of mannose-functionalized dendrimers with pea (Pisum sativum) lectin Mol. Pharm 2005 2, N 4:295–301.
[6] Perez-Gimenez J., Mongiardini E. J., Althabegoiti J. M, Covelli J., Quelas J. I., Lopez-Garcia S. L., Lodeiro A. R. Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants Int. J. Microbiol 2009 2009:719367.
[7] Van Nevel C. J., De Rycke H., Beeckmans S., De Wilde R., Van Driessche E. Binding of biotinylated legume seed lectins with glycoproteins in blotted receptor-analogs: influence of incubation pH Animal Feed Sci. Technol 2001 94, N 3–4:147–153.
[8] Zhu-Salzman K., Shade R. E., Koiwa H., Salzman R. A., Narasimhan M., Bressan R. A., Hasegawa P. M., Murdock L. L. Carbohydrate binding and resistance to proteolysis control insecticidal activity of Griffonia simplicifolia lectin II Proc. Natl Acad. Sci. USA 1998 95, N 25:15123–15128.
[9] Pande A. H., Sumati, Hajela N., Hajela K. Carbohydrate induced modulation of cell membrane VII. Binding of exogenous lectin increases osmofragility of erythrocytes FEBS Lett 1998 427, N 1:21–24.
[10] Benoist H., Culerrier R., Poiroux G., Segui B., Jauneau A., Van Damme E. J., Peumans W. J., Barre A., Rouge P. Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death J. Leukoc. Biol 2009 86, N 1:103–114.
[11] Melnykova N. M., Kovalchuk N. V., Kots S. Ya., Musatenko L. I. Influence of soybean seeds lectins on the legume-Rhizobium symbiosis formation and functioning Fisiol. Biokhim. Kult. Rast 2009 41, N 5:439–446.
[12] Thamotharan S., Karthikeyan T., Kulkarni K. A., Shetty K. N., Surolia A., Vijayan M., Suguna K. Modification of the sugar specificity of a plant lectin: structural studies on a point mutant of Erythrina corallodendron lectin Acta Crystallogr. D Biol. Crystallogr 2011 67, Pt 3:218–227.
[13] Maenuma K., Yim M., Komatsu K., Hoshino M., Tachiki-Fujioka A., Takahashi K., Hiki Y., Bovin N., Irimura T. A library of mutated Maackia amurensis hemagglutinin distinguishes putative glycoforms of immunoglobulin A1 from IgA nephropathy patients J. Proteome Res 2009 8, N 7:3617–3624.
[14] Maenuma K., Yim M., Komatsu K., Hoshino M., Takahashi Y., Bovin N., Irimura T. Use of a library of mutated Maackia amurensis hemagglutinin for profiling the cell lineage and differentiation Proteomics 2008 8, N 16:3274–3283.
[15] Yamamoto K., Konami Y., Osawa T. A chimeric lectin formed from Bauhinia purpurea lectin and Lens culinaris lectin recognizes a unique carbohydrate structure J. Biochem 2000 127, N 1:129–135.
[16] Baimiev A. Kh., Gubaidullin I. I., Baimiev A. Kh., Cheremis A. V. Effects of natural and hybrid lectins on the legume-rhizobium interactions Prikl. Biokhim. Mikrobiol 2009 45, N 1:84–91.
[17] Zhu-Salzman K., Ahn J. E., Salzman R. A., Koiwa H., Shade R. E., Balfe S. Fusion of a soybean cysteine protease inhibitor and a legume lectin enhances antiinsect activity synergistically Agric. Forest Enthomol 2003 5, N 4:317–323.
[18] Hossain M. A., Maiti M. K., Basu A., Sen S., Ghosh A. K., Sen S. K. Transgenic expression of onion leaf lectin gene in indian mustard offers protection against aphid colonization Crop Sci 2006 46, N 5:2022–2032.
[19] Fitches E., Audsley N., Gatehouse J. A., Edwards J. P. Fusion proteins containing neuropeptides as novel insect control agents: snowdrop lectin delivers fused allatostatin to insect haemolymph following oral ingestion Insect. Biochem. Mol. Biol 2002 32, N 12:1653–1661.
[20] Gabor F., Bogner E., Weissenboeck A., Wirth M. The lectin-cell interaction and its implications to intestinal lectin-mediated drug delivery Adv. Drug Deliv. Rev 2004 56, N 4:459–480.
[21] Gupta A., Gupta R. K., Gupta G. S. Targeting cells for drug and gene delivery: emerging applications mannans and mannan binding lectins J. Sci. Ind. Res 2009 68, N 6:465–483.
[22] Shen Y., Chen J., Liu Q., Feng C., Gao X., Wang L. Zhang Q., Jiang X. Effect of wheat germ agglutinin density on cellular uptake and toxicity of wheat germ agglutinin conjugated PEG-PLA nanoparticles in Calu-3 cells Int. J. Pharm 2011 413, N 1– 2:184–193.
[23] Wang W., Hause B., Peumans W. J., Smagghe G., Mackie A., Fraser R., van Damme E. J. The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology Plant Physiol 2003 132, N 3:1322–1334.
[24] Ciopraga J., Gozia O., Tudor R., Brezuica L., Doyle R. J. Fusarium sp. growth inhibition by wheat germ agglutinin Biochim. Biophys. Acta 1999 1428, N 2–3:424–432.
[25] Deng K., Wang Q., Zeng J., Guo X., Zhao X., Tang D., Liu X. A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response J. Plant Biol 2009 52, N 6:493–500.
[26] Gilardoni P. A., Hettenhausen Ch., Baldwin I. T., Bonaventure G. Nicotiana attenuate lectin receptor kinase 1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory Plant Cell 2011 23, N 9:3512–3532.
[27] Zhang W., Peumans W., Barre A., Astoul C. H., Rovira P., Rouge P., Proost P., Truffa-Bachi P., Jalali A. A., Van Damme E. J. Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants Planta 2000 210, N 6:970–978.
[28] Jiang J.-F., Xu Y.-Y., Chong K. Overexpression of OsJAC1, a lectin gene, suppresses the Coleoptile and stem elongation in rice J. Integrat. Plant Biol 2007 49, N 2:230–237.
[29] Does M. P., Houterman P. M., Dekker H. L., Cornelissen B. J. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco Plant Physiol 1999 120, N 2:421–431.
[30] Ye S. H., Chen S., Zhang F., Wang W., Tian Q., Liu J. Z., Chen F., Bao J. K. Transgenic tobacco expressing Zephyranthes grandiflora agglutinin confers enhanced resistance to aphids Appl. Biochem. Biotechnol 2009 158, N 3:615–630.
[31] Solleti S. K., Bakshi S., Purkayastha J., Panda S. K., Sahoo L. Transgenic cowpea (Vigna unguiculata) seeds expressing a bean a-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles Plant Cell Rep 2008 27, N 12:1841–1850.
[32] Burrows P. R., Barker A. D. P., Newell C. A., Hamilton W. D. O. Plant-derived enzyme inhibitors and lectins for resistance against plant-parasitic nematodes in transgenic crops Pesticide Sci 1998 52, N 2:176–183.
[33] Saha P., Dasgupta I., Das S. A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors Plant Mol. Biol 2006 62, N 4–5:735–752.
[34] Macedo M. L., de Castro M. M., Freire M. G. M. Mechanisms of the insecticidal action of TEL (Talisia esculenta lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae) Arch. Insect. Biochem. Physiol 2004 56, N 2:84–96.
[35] Banerjee S., Hess D., Majumder P., Roy D., Das S. The interactions of Allium sativum leaf agglutinin with a chapronin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid J. Biol. Chem 2004 279, N 22:23782–23789.
[36] Chakraborti D., Sarkar A., Mondal H. A., Das S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora Transgenic Res 2009 18, N 4:529–544.
[37] Vasconcelos I. M., Oliveira J. T. Antinutritional properties of plant lectins Toxicon 2004 44, N 4:385–403.
[38] Liu Z. H., Zhang Z. S., Guo H. N., Jia Y. T., Zheng G. Y., Tian Y. C. Expression of two plant agglutinin genes in transgenic tobacco plants Yi Chuan Xue Bao 2005 32, N 7:758–763.
[39] Ma Q. H., Tian B., Li Y. L. Overexpression of a wheat jasmonate-regulated lectin increases pathogen resistance Biochimie 2010 92, N 2:187–193.
[40] Chen X., Shang J., Chen D., Lei C., Zou Y., Zhai W., Liu G., Xu J., Ling Z., Cao G., Ma B., Wang Y., Zhao X., Li S., Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance Plant J 2006 46, N 5:794–804.
[41] Sadeghi A., Van Damme E. J., Peumans W. J., Smagghe G. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculates (F.) oviposition Phytochemistry 2006 67, N 18:2078–2084.
[42] Hirsch A. M. Role of lectins (and rhizobial exopolysaccharides) in legume nodulation Curr. Opin. Plant Biol 1999 2, N 4:320–326.
[43] Baimiev A. Kh., Gubaidullin I. I., Chemeris A. V., Vakhitov V. A. Contribution of lectin sugar-binding peptides structure determines specificity of rhizobium-legume symbiosis in Galega orientalis and G. officinalis Mol. Biol. (Mosk) 2005 39, N 1:103–111.
[44] Diaz C. L., Spaink H. P., Kijne J. W. Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene Mol. Plant Microbe Interact 2000 13, N 3:268–276.
[45] De Hoff P. L., Brill L. M., Hirsch A. M. Plant lectins: the ties that bind in root symbiosis and plant defense Mol. Genet. Genomics 2009 282, N 1:1–15.
[46] Kirichenko E. V., Titova L. V. Soybean lectin as a component of a composite biopreparation involving Bradyrhizobium japonicum 634b Prikl. Biokhim. Mikrobiol 2006 42, N 2:219–223.
[47] Halverson L. J., Stacey G. Host recognition in the Rhizobiumsoybean symbiosis. Evidence for the involvement of lectin in nodulation Plant Physiol 1985 77, N 3:621–625.
[48] Mamenko P. M., Malichenko S. M., Datsenko V. K., Kots S. Ya. Symbiotic properties and productivity of soybean depend on concentration of soybean lectin in suspension for inoculation Fisiol. Biokhim. Kult. Rast 2003 35, N 3:215–221.
[49] de Vasconcelos M. A., Cunha C. O., Arruda F. V., Carneiro V. A., Mercante F. M., do Nascimento Neto L. G., de Sousa G. S., Rocha B. A., Teixeira E. H., Cavada B. S., dos Santos R. P. Lectin from Canavalia brasilensis seeds (ConBr) is a valuable biotechnological tool to stimulate the growth of Rhizobium tropici in vitro Molecules 2012 17, N 5:5244–5254.
[50] Musarrat J., Haseeb A. Agrochemicals as antagonist of lectinmediated Rhizobium-legume symbiosis: paradigms and prospects Curr. Sci 2000 78, N 7:793–797.
[51] Kirichenko E. V., Titova L. V., Zhemoida A. V., Omel'chuk S. V. Influence of legume plants lectins with different specificity on the development of crop seedlings. Fisiol. Biokhim. Kult. Rast 2004 36, N 5:390–397.
[52] Mamenko P. M., Kots S. Ya. Physiological response of non-nodular soybean plants on presowing seed treatment with lectin. Fisiol. Biokhim. Kult. Rast 2006 38, N 4:324–330.
[53] Kozar S. F., Zherebor T. A., Demchuk I. V., Volkova I. V., Usmanova T. O. Efficiency of the potato inoculation with Azotobacter as effected by potato lectin Agric. Microbiol: Interag. Them. Res. Miscel 2009 N 9:95–103.
[54] Karpati E., Kiss P., Ponyi T., Fendrik I., de Zamaroczy M., Orosz L. Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation J. Bacteriol 1999 181, N 13:3949–3955.
[55] Karpova I. S., Koretskaya N. V. Study on modifying action of lectins on the toxic and mutagenic effects of Ni(II) ions in Bacillus subtills culture Biopolym. Cell 2003 19, N 3:224–230.
[56] Sreevidya V. S., Hernandez-Oane R. J., So R. B., Sullia S. B., Stacey G., Ladha J. K., Reddy P. M. Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice Plant Sci 2005 169, N 4:726–736.
[57] Souleimanov A., Prithiviraj B., Smith D. L. The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn J. Exp. Bot 2002 53, N 376:1929–1934.
[58] Varki A. Biological roles of oligosaccharides: all of the theories are correct Glycobiology 1993 3, N 2:97–130.
[59] Tucker-Burden C., Chappa P., Krishnamoorthy M., Gerwe B. A., Scharer C. D., Heimburg-Molinaro J., Harris W., Usta S. N., Eilertson C. D., Hadjipanayis C. G., Stice S. L., Brat D. J., Nash R. J. Lectins identify glycan biomarkers on glioblastoma-derived cancer stem cells Stem Cells Dev 2012 21, N 13:2374–2386.
[60] Wanchoo A., Lewis M. W., Keyhani N. O. Lectin mapping reveals stage-specific display of surface carbohydrates in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana Microbiology 2009 155, Pt 9:3121–3133.
[61] Holikova Z., Hrdlickova-Cela E., Plzak J., Smetana K., Betka J., Dvorankova B., Esner M., Wasano K., Andre S., Kaltner H., Motlik J., Hercogove J., Kodet R., Gabius H. J. Defining the glycophenotype of squamous epithelia using plant and mammalian lectins. Differentiation-dependent expression of a2,6and a2,3-linked N-acetylneuraminic acid in squamous epithelia and carcinomas, and its differential effect on binding of the endogenous lectins galectins-1 and -3 APMIS 2002 110, N 12:845–856.
[62] Paiva P. M., Souza A. F., Oliva M. L., Kennedy J. F., Cavalcanti M. S., Coelho L. C., Sampaio C. A. Isolation of a trypsin inhibitor from Echinodorus paniculatus seeds by affinity chromatography on immobilized Cratylia mollis isolectins Bioresour Technol 2003 88, N 1:75–79.
[63] Heo S. H., Lee S. J., Ryoo H. M., Park J. Y., Cho J. Y. Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LCMS/MS Proteomics 2007 7, N 23:4292–4302.
[64] Miyoshi T., Tanaka I., Tsuyuhara T., Watanabe E, Aizawa T., Kimura K., Watanabe Y. Fouling potentials of polysaccharides in membrane bioreactors (MBRs) assessed by lectin affinity chromatography Water Sci. Technol 2010 61, N 7:1787–1792.
[65] Hu S., Wong D. T. Lectin microarray Proteomics Clin. Appl 2009 3, N 2:148–154.
[66] Uchiyama N., Kuno A., Tateno H., Kubo Y., Mizuno M., Noguchi M., Hirabayashi J. Optimization of evanescent-field fluorescence-assisted lectin microarray for high-sensitivity detection of monovalent oligosaccharides and glycoproteins Proteomics 2008 8, N 15:3042–3050.
[67] Fry S. A., Afrough B., Lomax-Browne H. J., Timms J. F., Velentzis L. S., Leathem A. J. Lectin microarray profiling of metastatic breast cancers Glycobiology 2011 21, N 8:1060–1070.
[68] Hsu K. L., Mahal L. K. A lectin microarray approach for the rapid analysis of bacterial glycans Nat. Protoc 2006 1, N 2:543–549.
[69] Beltrao E. I., Medeiros P. L., Rodrigues O. G., Figueredo-Silva J., Valenca M. M., Coelho L. C., Carvalho L. B. Jr. Parkia pendula lectin as histochemistry marker for meningothelial tumour Eur. J. Histochem 2003 47, N 2:139–142.
[70] Rohringer R., Chong J., Gillespie R., Harder D. E. Gold-conjugated arabinogalactan-protein and other lectins as ultrastructural probes for the wheat/stem rust complex Histochemistry 1989 91, N 5:383–393.
[71] Zhang J., Liu J., Meng L., Ma Z., Tang X., Cao Y., Sun L. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate J. Microbiol 2012 50, N 2:191–198.
[72] Cook D. B., Bustamam A. A., Brotherick I., Shenton B. K., Self C. H. Lectin ELISA for the c-erb-B2 tumor marker protein p185 in patients with breast cancer and controls Clin. Chem 1999 45, N 2:292–295.
[73] Qiu Y., Patwa T. H., Xu L., Shedden K., Misek D. E., Tuck M., Jin G., Ruffin M. T., Turgeon D. K., Synal S., Bresalier R., Marcon N., Brenner D. E., Lubman D. M. Plasma glycoprotein profiling for colorectal cancer biomarker identification by lectin glycoarray and lectin blot J. Proteome Res 2008 7, N 4:1693–1703.
[74] Etxebarria J., Calvo J., Martin-Lomas M., Reichardt N. C. Lectin-array blotting: profiling protein glycosylation in complex mixtures ACS Chem. Biol 2012 7, N 10:1729–1737.
[75] Ding L., Ji Q., Qian R., Cheng W., Ju H. Lectin-based nanoprobes functionalized with enzyme for highly sensitive electrochemical monitoring of dynamic carbohydrate expression on living cells Anal. Chem 2010 82, N 4:1292–1298.
[76] Yoshihara Y., Mizuno T., Nakahira M., Kawasaki M., Watanabe Y., Kagamiyama H., Jishage K., Ueda O., Suzuki H., Tabuchi K., Sawamoto K, Okano H., Noda T., Mori K. A genetic approach to visualization of multisynaptic neutral pathways using plant lectin transgene Neuron 1999 22, N 1:33–41.
[77] Astoul C. H., Peumans W. J., Van Damme E. J., Rouge P. Accessibility of the high-mannose glycans of glycoprotein gp120 from human immunodeficiency virus type 1 probed by in vitro interaction with mannose-binding lectins Biochem. Biophys. Res. Commun 2000 274, N 2:455–460.
[78] Orntoft T. F., Jepsen J., Hansen P. V., Raundahl U., Langkilde N. C. A two-site lectinoenzymatic assay for determination of tumor marker glycoproteins in rectal secretions Glycoconj. J 1997 14, N 2:191–199.
[79] Karpova I. S., Koretskaya N. V. Dependence of the receptorlectin interaction on radiation mode and dose in Chornobyl accident liquidators Biopolym. Cell 2003 19, N 2:133–139.
[80] Alencar N. M., Teixeira E. H., Assreuy A. M., Cavada B. S., Flores C. A., Ribeiro R. A. Leguminous lectins as tools for studying the role of sugar residues in leukocyte recruitment Mediators Inflamm 1999 8, N 2:107–113.
[81] Alencar V. B., Alencar N. M., Assreuy A. M., Mota M. L., Brito G. A., Aragao K. S., Bittencourt F. S., Pinto V. P., Debray H., Ribeiro R. A., Cavada B. S. Pro-inflammatory effect of Arum maculatum lectin and role of resident cells Int. J. Biochem. Cell Biol 2005 37, N 9:1805–1814.
[82] Halliday J. A., Franks A. H., Ramsdale T. E., Martin R., Palant E. A rapid, semi-automated method for detection of Galbeta14GlcNAc alpha-2,6-sialyltransferase (EC activity using the lectin Sambucus nigra agglutinin Glycobiology 2001 11, N 7:557–564.
[83] Wang Y. C., Nakagawa M., Garitaonandia I., Slavin I., Altun G., Lacharite R. M., Nazor K. L., Tran H. T., Lynch C. L., Leonardo T. R., Liu Y., Peterson S. E., Laurent L. C., Yamanaka S., Loring J. F. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis Cell Res 2011 21, N 11:1551–1563.
[84] Balzarini J., Hatse S., Vermeire K., Princen K., Aquaro S., Perno C. F., De Clercq E., Egberink H., Vanden Mooter G., Peumans W., Van Damme E., Schols D. Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection Antimicrob. Agents Chemother 2004 48, N 10:3858–3870.
[85] Wong J. H., Ng T. B. Isolation and characterization of a glucose/mannose-specific lectin with stimulatory effect on nitric oxide production by macrophages from the emperor banana Int. J. Biochem. Cell Biol 2006 38, N 2:234–243.
[86] Pryme I. F., Dale T. M., Tilrem P. Oral mistletoe lectins: a case for their use in cancer therapy Cancer Therapy 2007 5:287–300.
[87] Elsasser-Beile U., Voss M., Schuhle R., Wetterauer U. Biological effects of natural and recombinant mistletoe lectin and an aqueous mistletoe extract on human monocytes and lymphocytes in vitro J. Clin. Lab. Anal 2000 14, N 6:255–259.
[88] Zhang X. J., Ke L. M., Yang J., Lin L. W., Xue E. S., Wang Y., Yu L. Y., Chen Z. K. Development, characterization and anti-tumor effect of a sequential sustained-release preparation containing ricin and cobra venom cytotoxin Pharmazie 2012 67, N 7:618–621.
[89] Islam B., Khan S. N., Naeem A., Sharma V., Khan A. U. Novel effect of plant lectins on the inhibition of Streptococcus mutans biofilm formation on saliva-coated surface J. Appl. Microbiol 2009 106, N 5 P.1682–1689.
[90] Barauna S. C., Kaster M. P., Heckert B. T., do Nascimento K. S., Rossi F. M., Teixeira E. H., Cavada B. S., Rodrigues A. L., Leal R. B. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice Pharmacol. Biochem. Behav 2006 85, N 1:160–169.
[91] Mislovicova D., Gemeiner P., Sandula J., Masarova J., Vikartovska A., Docolomansky P. Examination of bioaffinity immobilization by precipitation of mannan and mannan-containing enzymes with legume lectins Biotechnol. Appl. Biochem 2000 31, Pt 2:153–159.
[92] Alen'kina S. A., Zharkova V. R., Nikitina V. E. Stabilizing effect of Azospirillum lectins on beta-glucosidase activity Prikl. Biokhim. Mikrobiol 2007 43, N 6:653–656.
[93] Lam S. K., Han Q. F., Ng T. B. Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds Biosci. Rep 2009 29, N 5:293–299.
[94] Fernandez-del-Carmen A., Juarez P., Presa S., Granell A., Orzaez D. Recombinant jacalin-like plant lectins are produced at high levels in Nicotiana benthamiana and retain agglutination activity and sugar specificity J. Biotechnol 2013 163, N 4:391–400.