Biopolym. Cell. 2013; 29(1):3-10.
Reviews
Putative mechanisms of bacterial effects on plant photosystem under stress
1Burlak O. P., 2de Vera J.-P., 3Yatsenko V., 1Kozyrovska N. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Space Research Institute, DLR,
    Rutherfordstr, 2, D-12489 Berlin, Germany
  3. Space Research Institute of NAS of Ukraine and National Space Agency of Ukraine
    40, block 4/1, Akademika Hlushkova Av., Kyiv, Ukraine, 03680

Abstract

Bacteria are micro- and nanoorganisms that spatially colonize the plant organism and comprise various types of interactions with the host ranging from pathogenic to mutualistic and symbiotic. The presence of these exo- and endosymbionts may affect the plant host physiology. Non-pathogenic bacteria can enhance defensive capacity in plants that provides protection against phytopathogens and herbivores, as well as makes a valuable contribution to the protection of plants from abiotic stressors. Endophytes demonstrate the protection of photosystem in plants under environmental challenges. The putative mechanisms of bacterial effects on plant photosystem are discussed in this paper.
Keywords: bacteria, photosystem, abiotic and biotic stresses

References

[1] Krause G., Weis E. 1991 Chlorophyll fluorescence and photosynthesis: the basics Annu. Rev. Plant Physiol. Plant Mol. Biol 42:313–349.
[2] Maxwell K., Johnson G. N. 2000 Chlorophyll fluorescence – a practical guide J. Exp. Bot 51, N 345:659–668.
[3] Baker N. R., Rosenqvist E. 2004 Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities J. Exp. Bot 55, N 403:1607– 1621.
[4] Scholes J. D., Rolfe S. A. 1996 Photosynthesis in localised regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence Planta 199, N 4:573–582.
[5] Guidi L., Mori S., Degl'Innocenti E., Pecchia S. 2007 Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence Plant Physiol. Biochem 45, N 10–11:851–857.
[6] Scholes J. D., Rolfe S. A. 2009 Chlorophyll fluorescence imaging as tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective Funct. Plant Biol 36, N 11:880–892.
[7] Zou J., Rodriguez-Zas S., Aldea M., Li M., Zhu J., Gonzalez D. O., Vodkin L. O., DeLucia E., Clough S. J. 2005 Expression profiling soybean response to Pseudomonas syringae reveals new defenserelated genes and rapid HR-specific downregulation of photosynthesis Mol. Plant Microbe Interact 18, N 11 P. 1161–1174.
[8] Matous K., Benediktyova Z., Berger S., Roitsch T., Nedbal L. 2006 Case study of combinatorial imaging: what protocol and what chlorophyll fluorescence image to use when visualizing infection of Arabidopsis thaliana by Pseudomonas syringae? Photosynth. Res 90, N 3:243–253.
[9] Berger S., Benediktyova Z., Matous K., Bonfig K., Mueller M. J., Nedbal L., Roitsch T. 2007 Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana J. Exp. Bot 58, N 4:797–806.
[10] Bonfig K. B., Schreiber U., Gabler A., Roitsch T., Berger S. 2006 Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves Planta 225, N 1:1–12.
[11] Cartieaux F., Thibaud M. C., Zimmerli L., Lessard P., Sarrobert C., David P., Gerbaud A., Robaglia C., Somerville S., Nussaume L. 2003 Transcriptome analysis of Arabidopsis colonized by a plantgrowth promoting rhizobacterium reveals a general effect on disease resistance Plant J 36, N 2:177–188.
[12] Zhang H., Xie X., Kim M. S., Kornyeyev D. A., Holaday S., Pare P. W. 2008 Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta Plant J 56, N 2:264–273.
[13] Zhang H., Kim M. S., Sun Y., Dowd S. E., Shi H., Pare P. W. 2008 Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1 Mol. Plant Microbe Interact 21, N 6:737–744.
[14] Zhang H., Murzello C., Sun Y., Kim M. S., Xie X., Jeter R. M., Zak J. C., Dowd S. E., Pare P. W. 2010 Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03) Mol. Plant Microbe Interact 23, N 8 P. 1097–1104.
[15] Shi Y., Lou K., Li C. 2010 Growth and photosynthetic efficiency promotion of sugar beet (Beta vulgaris L.) by endophytic bacteria// Photosynth. Res 105, N 1:5–13.
[16] Trognitz F., Scherwinski K., Fekete A., Schmidt S., Eberl L., Rodewald Ya., Schmid M., Compant S., Hartmann A., SchmittKopplin P., Trognitz B., Sessitsch A. Interaction between potato and the endophyte Burkholderia phytofirmans Tagung 59 der Vereinigung der Pfl Anzenzuchter und Saatgutkaufleute (Osterreichs, 25–27 November 2008) Osterreichs, 2008:63–66.
[17] Takahashi S, Murata N. 2008 How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13, N 4:178–182.
[18] Percival G. C., Sheriffs C. N. 2002 Identification of drought-tolerant woody perennials using chlorophyll fluorescence J. Arboriculture 28, N 5:215–223.
[19] Lu C., Qiu N., Lu Q., Wang B., Kuang T. 2003 PSII photochemistry, thermal energy dissipation, and the xanthophyll cycle in Kalanchoe daigremontiana exposed to a combination of water stress and high light Physiol. Plant 118, N 2:173–172.
[20] Debez A., Koyro H. W., Grignon C., Abdelly C., Huchzermeyer B. 2008 Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment Physiol. Plant 133, N 2:373–385.
[21] Dai F., Zhou M., Zhang G. 2007 The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance Plant Physiol. Biochem 45, N 12:915–921.
[22] Marks S., Clay K. 1996 Physiological responses of Festuca arundinacea to fungal endophyte infection New Phytologist 133, N 4:727–733.
[23] Borde M., Dudhane M., Jite P. K. 2010 AM Fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition Not. Sci. Biol 2, N 4:64–71.
[24] Sherameti I., Tripathi S., Varma A., Oelmuller R. 2008 The root-colonizing endophyte Piriformospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves Mol. Plant Microbe Interact 21, N 6:799–807.
[25] Burlak O., Mikheev O., Zaets I., de Vera J.-P., Lorek A., Koncz A., Foing B., Kozyrovska N. 2011 Photosystem II of Kalanchoe daigremontiana sheltered by bacterial consortium under Mars-like conditions Kosmichna Nauka i Tekhnologiya (Space Sci. Technol.) 17, N 3:45–53.
[26] de Vera J. P., Mohlmann D., Butina F., Lorek A., Wernecke R., Ott S. 2010 Survival potential and photosynthetic activity of lichens under Mars-like conditions: a laboratory study Astrobiology 10, N 2:215–227.
[27] Kozyrovska N. O. Endophytes.ua Kyiv: LAT&K, 2011 248 p.
[28] Reiter B., Pfeifer U., Schwab H., Sessitsch A. 2002 Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica Appl. Environ. Microbiol 68, N 5:2261–2268.
[29] Podolich O. V., Ardanov P. E., Voznyuk T. M., Kovalchuk M. V., Danylchenko O. V., Laschevskyi V. V., Lyastchenko S. A., Kozyrovska N. O. 2007 Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria Biopolym. Cell 23, N 1:21–28.
[30] Lian J., Wang Z., Zhou S. 2008 Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection J. Gen. Appl. Microbiol 54, N 2 P. 83–92.
[31] Rosenblueth M., Martinez-Romero E. 2006 Bacterial endophytes and their interactions with hosts Mol. Plant Microbe Interact 19, N 8:827–837.
[32] Manter D. K., Delgado J. A., Holm D. G., Stong R. A. 2010 Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots Microb. Ecol 60, N 1:157–166.
[33] Sessitsch A., Hardoim P., Doring J., Weilharter A., Krause A., Woyke T., Mitter B., Hauberg-Lotte L., Friedrich F., Rahalkar M., Hurek T., Sarkar A., Bodrossy L., van Overbeek L., Brar D., van Elsas J. D., Reinhold-Hurek B. 2012 Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis Mol. Plant Microbe Interact 25, N 1:28–36.
[34] Zaets I., Kozyrovska N. 2012Heavy metal resistance in plants: a putative role of endophytic bacteria Toxicity of heavy metals to legumes and bioremediation / Eds A. Zaidi et al Wien: Springer,:203–217
[35] Podolich O., Lytvynenko T., Voznyuk T., Kovalchuk M., Kozyrovska N. 2006 Detection of endophytic bacteria communities in aseptic potato plants after inoculation with Pseudomonas sp. IMBG 163 Proc. Uzhgorod State Univ N 18:165–170.
[36] Ardanov P., Ovcharenko L., Zaets I., Kozyrovska N., Pirttila A. M. 2011 Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.) Biol. Control 56, N 1:43–49.
[37] Ardanov P., Sessitsch A., Haggman H., Kozyrovska N., Pirttila A. M. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One. 2012;7(10):e46802.
[38] Rintamaki E., Salo R., Lehtonen E., Aro E. M. 1995 Regulation of D1protein degradation during photoingibition of photosystem II in vivo: phosphorylation of the D1-protein in various plant groups Planta 195, N 3:379–386.
[39] Fouts D. E., Tyler H. L., de Boy R. T., Daugherty S., Ren Q., Badger J. H., Durkin A. S., Huot H., Shrivastava S., Kothari S., Dodson R. J., Mohamoud Y., Khouri H., Roesch L. F., Krogfelt K. A., Struve C, Triplett E. W., Methe B. A. 2008 Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice PLoS Genet 25, N 7 e1000141.
[40] Guralnick L. J., Heath R. L., Goldstein G., Ting I. P. 1999 Fluorescence quenching in the varied photosynthetic modes of Portulacaria afra (L.) Jacq. Plant Physiol 1992 99 N. 4:1309–1313.
[41] Herzog B., Grams T. E. E., Haag-Kerwer A., Ball E., Franco A. C., Luttge U. 2008 Expression of modes of photosynthesis (C3, CAM) in Clusia criuva Camb. in a cerrado/gallery forest transect Plant Biol 1:357–364.
[42] van Peer R., Niemann G. J., Schippers B. 1991 Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r Phytopathology 81, N 7:728–734.
[43] Wei G., Kloepper J. W., Tuzun S. 1991 Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria Phytopathology 81, N 12:1508–1512.
[44] Conn V. M., Walker A. R., Franco C. M. 2008 Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana Mol. Plant Microbe Interact 21, N 2:208–218.