Biopolym. Cell. 2012; 28(6):441-448.
Molecular and Cell Biotechnologies
Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis
1, 2Saiapina O. Y., 1, 3Dzyadevych S. V., 2Jaffrezic-Renault N.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Laboratory of Analytical Sciences, University Claude Bernard
    Lyon 1, 43, Boulevard du 11 Novembre 1918, Villeurbanne Cedex, France, 69622
  3. Institute of High Technologies,
    Taras Shevchenko National University of Kyiv
    2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022


Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies). It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine). Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed.
Keywords: L-arginine, conductometric biosensors, serum, optimization procedure


[1] Kamoun P., Richard V., Rabier D., Saudubray J. 2002 Plasma lysine concentration and availability of 2-ketoglutarate in liver mitochondria J. Inherit. Metab. Dis 25, N 1:1–6.
[2] Levy H. 2002Histidinemia Orphanet encyclopedia Harvard,:1–5.
[3] Uchino T., Snyderman S. E., Lambert M., Qureshi I. A., Shapira S. K., Sansaricq C., Smit L. M., Jakobs C., Matsuda I. 1995 Molecular basis of phenotypic variation in patients with argininemia Hum. Genet 96, N 3:255–260.
[4] Capiaumont J., Legrand C., Dousset B., Belleville F., Nabet P. 1995 Arginine consumption as a monitor of mycoplasma infection of cultured cells In Vitro Cell. Dev. Biol Animal 31, N 7:497–498.
[5] Michelangeli C., Vargas R. E. 1994 L-canavanine influences feed intake, plasma basic amino acid concentrations and kidney arginase activity in chicks J. Nutr 124, N 7:1081–1087.
[6] Pousga S., Boly H., Lindberg J., Ogle B. 2006 Effect of supplementation on the feed intake and performance of confined and scavenging crossbred growing chickens in Burkina Faso Trop. Anim. Health Prod 38, N 4:323–331.
[7] Sakaguchi S. 1950 A new method for the colorimetric determination of arginine J. Biochem 37, N 2:231–236.
[8] Eggleton P., Elsden S. R., Gough N. 1943 The estimation of creatine and of biacetyl Biochem. J 37, N 5:526–529.
[9] Wilson K., Walker M. 1994 Principles and techniques of practical biochemistry Cambridge: Univ. press, 586 p.
[10] Gopalakrishna R., Nagarajan B. 1980 A simplified procedure for the estimation of arginine in plasma and urine using arginase Clin. Chim. Acta 106, N 3:333–337.
[11] Mira de Orduna R. 2001 Quantitative determination of L-arginine by enzymatic end-point analysis J. Agric. Food. Chem 49, N 2:549–552.
[12] Hanko V. P., Heckenberg A., Rohrer J. S. 2004 Determination of amino acids in cell culture and fermentation broth media using anion-exchange chromatography with integrated pulsed amperometric detection J. Biomol. Tech 15, N 4:317–324.
[13] Kaspar H., Dettmer K., Chan Q., Daniels S., Nimkar S., Daviglus M. L., Stamler J., Elliott P., Oefner P. J. 2009 Urinary amino acid analysis: a comparison of iTRAQ-LC-MS/MS, GC-MS, and amino acid analyzer J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci 877, N 20–21:1838–1846.
[14] Boulat O., McLaren D. G., Arriaga E. A., Chen D. D. 2001 Separation of free amino acids in human plasma by capillary electrophoresis with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism J. Chromatogr. B. Biomed. Sci. Appl 754, N 1:217–228.
[15] Ramautar R., Mayboroda O. A., Derks R. J., van Nieuwkoop C., van Dissel J. T., Somsen G. W., Deelder A. M., de Jong G. J. 2008 Capillary electrophoresis-time of flight-mass spectrometry using noncovalently bilayer-coated capillaries for the analysis of amino acids in human urine Electrophoresis 29, N 12 P. 2714–2722.
[16] Martin-Girardeau A., Renou-Gonnord M. F. 2000 Optimization of a capillary electrophoresis-electrospray mass spectrometry method for the quantitation of the 20 natural amino acids in childrens blood J. Chromatogr. B 742, N 1:163–171.
[17] Saiapina O. Y., Dzyadevych S. V., Jaffrezic-Renault N., Soldatkin O. P. 2012 Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination Talanta 92:58–64.
[18] Dzyadevych S., Soldatkin A., Soldatkin A., Peshkova V., Vasilenko A., Melnik V., Mikhal A., Semenycheva L., Rubanchuk M. 2009 Four-channel biosensor's analyzer of saccharides Sens. Electron. Microsyst. Technol N 3:47–53.
[19] Dzyadevich S. V., Arkhipova V. N., Soldatkin A. P., El'skaya A. V., Shul'ga A. A. 1998 Glucose conductometric biosensor with potassium hexacyanoferrate (III) as an oxidizing agent Anal. Chim. Acta 374, N 1:11–18.
[20] Saiapina O. Y., Pyeshkova V. M., Soldatkin O. O., Melnik V. G., Akata-Kurc B., Walcarius A., Dzyadevych S. V., Jaffrezic-Renault N. 2011 Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination Materials Sci. Eng.: C 31, N 7:1490–1497.
[21] Boger R. H. 2007 The pharmacodynamics of L-arginine J. Nutr 137, N 6:1650S–1655S.
[22] Soldatkin O. O., Nazarenko O. A., Pavluchenko O. S., Kukla O. L., Arkhipova V. M., Dzyadevych S. V., Soldatkin O. P., El'skaya A. V. 2008 Optimization of enzymatic bioselective elements as components of potentiometric multi-biosensor Biopolym. Cell 24, N 1:41–50.
[23] Canales M., Westermeyer L., Carvajal N. 2001 Molecular dynamics simulations of active site mutants of rat liver arginase Electron. J. Biotechnol 4, N 3:1–7.
[24] Xie X.-Y., Li X., Wang Z.-Y., Wang C.-X. 2004 Thermokinetic studies on the activation of the bovine liver arginase by manganese ions Thermochim. Acta 414, N 1:19–23.
[25] Reczkowski R. S., Ash D. E. 1994 Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors Arch. Biochem. Biophys 312, N 1:31–37.
[26] Dabir S., Dabir P., Somvanshi B. 2006 The kinetics of inhibition of Vigna catjang cotyledon and buffalo liver arginase by L-proline and branched-chain amino acids J. Enzyme Inhib. Med. Chem 21, N 6:727–731.
[27] Heyda J., Mason P. E., Jungwirth P. 2010 Attractive interactions between side chains of histidine-histidine and histidine-argininebased cationic dipeptides in water J. Phys. Chem. B 114, N 26:8744–8749.