Biopolym. Cell. 2012; 28(4):245-251.
C-methods to study 3D organization of the eukaryotic genome
1, 3Gavrilov A. A., 1, 2Razin S. V., 1Iarovaia O. V.
  1. Institute of Gene Biology, Russian Academy of Sciences
    34/5, Vavilova Str., Moscow, Russian Federation, 119334
  2. Department of Molecular Biology, Faculty of Biology,
    M. V. Lomonosov Moscow State University
    Leninskie Gory, Moscow, Russian Federation, 119991
  3. University of Oslo, Centre for Medical Studies in Russia
    34/5, Vavilova Str., Moscow, Russian Federation, 119334


It is becoming increasingly evident that spatial organization of the eukaryotic genome plays an important role in regulation of gene expression. The three-dimensional (3D) genome organization can be studied using different types of microscopy, in particular those coupled with fluorescence in situ hybridization. However, when it comes to the analysis of spatial interaction between specific genome regions, much higher performance demonstrate chromosome conformation capture (3C) methods. They are based on the proximity ligation approach which consists in preferential ligation of the ends of DNA fragments joined via protein bridges in living cells by formaldehyde fixation. It is assumed that such bridges link DNA fragments that are located in close spatial proximity in the cell nucleus. In this review we describe current 3C-based approaches, from 3C and ChiP-loop to Hi-C and ChiA-PET, going under the collective name of C-methods.
Keywords: chromosome conformation capture, genome spatial organization.


[1] Getzenberg R. H., Pienta K. J., Ward W. S., Coffey D. S. Nuclear structure and the three-dimensional organization of DNA J. Cell. Biochem 1991 47, N 4:289–299.
[2] Cremer T., Cremer M., Dietzel S., Muller S., Solovei I., Fakan S. Chromosome territories – a functional nuclear landscape Curr. Opin. Cell Biol 2006 18, N 3:307–316.
[3] Razin S. V., Iarovaia O. V., Sjakste N., Sjakste T., Bagdoniene L., Rynditch A. V., Eivazova E. R., Lipinski M., Vassetzky Y. S. Chromatin domains and regulation of transcription J. Mol. Biol 2007 369, N 3:597–607.
[4] Mao Y. S., Zhang B., Spector D. L. Biogenesis and function of nuclear bodies Trends Genet 2011 27, N 8:295–306.
[5] de Laat W., Grosveld F. Spatial organization of gene expression: the active chromatin hub Chromosome Res 2003 11, N 5:447–459.
[6] Gavrilov A. A., Razin S. V. Spatial configuration of the chicken alpha-globin gene domain: immature and active chromatin hubs Nucleic Acids Res 2008 36, N 14:4629–4640.
[7] Gavrilov A. A., Philonenko E. S., Iarovaia O. V., Razin S. V. Dynamic nature of active chromatin hubs Biopolym. Cell 2011 27, N 5:364–368.
[8] Kurukuti S., Tiwari V. K., Tavoosidana G., Pugacheva E., Murrell A., Zhao Z., Lobanenkov V., Reik W., Ohlsson R. CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2 Proc. Natl Acad. Sci. USA 2006 103, N 28:10684–10689.
[9] Nemeth A., Guibert S., Tiwari V. K., Ohlsson R., Langst G. Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes EMBO J 2008 27, N 8:1255– 1265.
[10] O'Sullivan J. M., Tan-Wong S. M., Morillon A., Lee B., Coles J., Mellor J., Proudfoot N. J. Gene loops juxtapose promoters and terminators in yeast Nat. Genet 2004 36, N 9:1014–1018.
[11] Spilianakis C. G., Flavell R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus Nat. Immunol 2004 5, N 10:1017–1027.
[12] Mitchell J. A., Fraser P. Transcription factories are nuclear subcompartments that remain in the absence of transcription Genes Dev 2008 22, N 1:20–25.
[13] Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., Corcoran A. E., Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh PLoS Biol 2007 5, N 8 e192.
[14] Simonis M., de Laat W. FISH-eyed and genome-wide views on the spatial organisation of gene expression Biochim. Biophys. Acta 2008 1783, N 11:2052–2060.
[15] Dekker J., Rippe K., Dekker M., Kleckner N. Capturing chromosome conformation Science 2002 295, N 5558:1306–1311.
[16] Gavrilov A., Eivazova E., Priozhkova I., Lipinski M., Razin S., Vassetzky Y. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification Methods Mol. Biol 2009 567:171–188.
[17] Tolhuis B., Palstra R. J., Splinter E., Grosveld F., de Laat W. Looping and interaction between hypersensitive sites in the active b-globin locus Mol. Cell 2002 10, N 6:1453–1465.
[18] Carter D., Chakalova L., Osborne C. S., Dai Y. F., Fraser P. Long-range chromatin regulatory interactions in vivo Nat. Genet 2002 32, N 4:623–626.
[19] Horike S., Cai S., Miyano M., Cheng J. F., Kohwi-Shigematsu T. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome Nat. Genet 2005 37, N 1:31–40.
[20] Cai S., Lee C. C., Kohwi-Shigematsu T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes Nat. Genet 2006 38, N 11:1278–1288.
[21] Splinter E., Heath H., Kooren J., Palstra R. J., Klous P., Grosveld F., Galjart N., de Laat W. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus Genes Dev 2006 20, N 17:2349–2354.
[22] Gavrilov A. A., Zukher I. S., Philonenko E. S., Razin S. V., Iarovaia O. V. Mapping of the nuclear matrix-bound chromatin hubs by a new M3C experimental procedure Nucleic Acids Res 2010 38, N 22:8051–8060.
[23] Berezney R., Coffey D. S. Nuclear matrix: isolation and characterization of a framework structure from rat liver nuclei J. Cell Biol 1977 73, N 3:616–637.
[24] Jackson D. A. Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei Mol. Biol. Rep 1997 24, N 3:209–220.
[25] Dorman E. R., Bushey A. M., Corces V. G. The role of insulator elements in large-scale chromatin structure in interphase Semin. Cell Dev. Biol 2007 18, N 5:682–690.
[26] Zhao Z., Tavoosidana G., Sjolinder M., Gondor A., Mariano P., Wang S., Kanduri C., Lezcano M., Sandhu K. S., Singh U., Pant V., Tiwari V., Kurukuti S., Ohlsson R. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intraand interchromosomal interactions Nat. Genet 2006 38, N 11:1341–1347.
[27] Simonis M., Klous P., Splinter E., Moshkin Y., Willemsen R., de Wit E., van Steensel B., de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C) Nat. Genet 2006 38, N 11:1348–1354.
[28] Schoenfelder S., Sexton T., Chakalova L., Cope N. F., Horton A., Andrews S., Kurukuti S., Mitchell J. A., Umlauf D., Dimitrova D. S., Eskiw C. H., Luo Y., Wei C. L., Ruan Y., Bieker J. J., Fraser P. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells Nat. Genet 2010 42, N 1:53–61.
[29] Hakim O., Sung M. H., Voss T. C., Splinter E., John S., Sabo P. J., Thurman R. E., Stamatoyannopoulos J. A., de Laat W., Hager G. L. Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements Genome Res 2011 21, N 5:697–706.
[30] Noordermeer D., de Wit E., Klous P., van de Werken H., Simonis M., Lopez-Jones M., Eussen B., de Klein A., Singer R. H., de Laat W. Variegated gene expression caused by cell-specific long-range DNA interactions Nat. Cell Biol 2011 13, N 8:944–951.
[31] Splinter E., de Wit E., Nora E. P., Klous P., van de Werken H. J., Zhu Y., Kaaij L. J., van Ijcken W., Gribnau J., Heard E., de Laat W. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA Genes Dev 2011 25, N 13:1371–1383.
[32] Dostie J., Richmond T. A., Arnaout R. A., Selzer R. R., Lee W. L., Honan T. A., Rubio E. D., Krumm A., Lamb J., Nusbaum C., Green R. D., Dekker J. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements Genome Res 2006 16, N 10:1299–1309.
[33] Bau D., Sanyal A., Lajoie B. R., Capriotti E., Byron M., Lawrence J. B., Dekker J., Marti-Renom M. A. The three-dimensional folding of the alpha-globin gene domain reveals formation of chromatin globules Nat. Struct. Mol. Biol 2011 18, N 1:107–114.
[34] Wang K. C., Yang Y. W., Liu B., Sanyal A., Corces-Zimmerman R., Chen Y., Lajoie B. R., Protacio A., Flynn R. A., Gupta R. A., Wysocka J., Lei M., Dekker J., Helms J. A., Chang H. Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Nature 2011 472, N 7341:120–124.
[35] Lieberman-Aiden E., van Berkum N. L., Williams L., Imakaev M., Ragoczy T., Telling A., Amit I., Lajoie B. R., Sabo P. J., Dorschner M. O., Sandstrom R., Bernstein B., Bender M. A., Groudine M., Gnirke A., Stamatoyannopoulos J., Mirny L. A., Lander E. S., Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome Science 2009 326, N 5950:289–293.
[36] Duan Z., Andronescu M., Schutz K., McIlwain S., Kim Y. J., Lee C., Shendure J., Fields S., Blau C. A., Noble W. S. A three-dimensional model of the yeast genome Nature 2011 465, N 7296:363–367.
[37] Zhang Y., McCord R. P., Ho Y. J., Lajoie B. R., Hildebrand D. G., Simon A. C., Becker M. S., Alt F. W., Dekker J. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations Cell 2012 148, N 5:908–921.
[38] Fullwood M. J., Liu M. H., Pan Y. F., Liu J., Xu H., Mohamed Y. B., Orlov Y. L., Velkov S., Ho A., Mei P. H., Chew E. G., Huang P. Y., Welboren W. J., Han Y., Ooi H. S., Ariyaratne P. N., Vega V. B., Luo Y., Tan P. Y., Choy P. Y., Wansa K. D., Zhao B., Lim K. S., Leow S. C., Yow J. S., Joseph R., Li H., Desai K. V., Thomsen J. S., Lee Y. K., Karuturi R. K., Herve T., Bourque G., Stunnenberg H. G., Ruan X., Cacheux-Rataboul V., Sung W. K., Liu E. T., Wei C. L., Cheung E., Ruan Y. An oestrogen-receptoralpha-bound human chromatin interactome Nature 2009 462, N 7269:58–64.
[39] Handoko L., Xu H., Li G., Ngan C. Y., Chew E., Schnapp M., Lee C. W., Ye C., Ping J. L., Mulawadi F., Wong E., Sheng J., Zhang Y., Poh T., Chan C. S., Kunarso G., Shahab A., Bourque G., Cacheux-Rataboul V., Sung W. K., Ruan Y., Wei C. L. CTCF-mediated functional chromatin interactome in pluripotent cells Nat. Genet 2011 43, N 7:630–638.
[40] Dekker J. The three «C»'s of chromosome conformation capture: controls, controls, controls Nat. Methods 2006 3, N 1:17–21.
[41] Levsky J. M., Singer R. H. Gene expression and the myth of the average cell Trends Cell Biol 2003 13, N 1:4–6.