Biopolym. Cell. 2012; 28(2):149-155 .
Genomics, Transcriptomics and Proteomics
Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties
1Chebotar G. O., 1, 2Chebotar S. V., 2Babenko D. O., 3Motsnyy I. I., 4Scherban A. B., 1Sivolap Yu. M.
  1. South Plant Biotechnology Center, NAAS of Ukraine
    3, Ovidiopolska doroga, Odesa, Ukraine, 65036
  2. Odesa I. I. Mechnikov National University
    2, Dvoryanska Str., Odesa, Ukraine, 65082
  3. Plant breeding and Genetics Institute, National Centre of Seed and Cultivar Investigation
    Ovidiopol'skaya dor., 3, Odessa, Ukraine, 65036
  4. The Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences
    10, Prosp. Akad. Lavrentyeva, Novosibirsk, Russian Federation, 630090


Light period significantly influences on the growth and development of plants. One of the major genes of photoperiod sensitivity is Ppd-D1, located on the chromosome 2D. The aim of the work was to determine the alleles and molecular structure of Ppd-D1 gene in samples from the collection of Ae. tauschii accessions, which have different flowering periods, and in 29 Ukrainian wheat varieties. Methods. We used methods of allele-specific PCR with primers to the Ppd-D1 gene, sequencing and Blast-analysis. Results. The collection of Ae. tauschii accessions and several varieties of winter and spring wheat was studied. The molecular structure of the allelic variants (414, 429 and 453 b. p.) of Ppd-D1b gene was determined in the collection of Aegilops. tauschii accessions. Conclusions. The Ppd-D1a allele was present in all studied varieties of winter wheat. 60 % of spring wheat is characterized by Ppd-D1b allele (size of amplification products 414 b. p.). Blast-analysis of the sequence data banks on the basis of the reference sequence of sample k-1322 from the collection of Ae. tauschii accessions has shown a high homology (80 to 100 %) between the nucleotide sequences of PRR genes, that characterize the A and D genomes of representatives of the genera Triticum and Aegilops.
Keywords: Aegilops tauschii, bread wheat, allele-specific PCR, phd-D1


[1] Dudnikov A. 1998 Allozyme variation in Transcaucasian populations of Aegilops squarrosa Heredity 80:248–258.
[2] Eig A. 1929 Monographisch-kritische Ubersicht der Gattung Aegilops. Repertorium Specierum Novarum Regni Vegetabilis Beihefte, Vol. 55 228 p.
[3] Dudnikov A. Spatial patterns of adenylate kinase, catalase, endopeptidase and fructose-1,6-diphosphatase encoding genes allelic variation in Aegilops tauschii Coss. Genet. Resour. Crop. Evol 2011
[4] Migushova E. F. Origin of the genomes of wheat Proc. Appl. Bot., Genet. and Breeders. 1975. 55, N 3:3–28
[5] Tyuterev S. L., Chmeleva Z. V., Moysa I. I., Dorofeev B. F. 1973 The study of protein and essential amino acids in grains of wheat and its wild relatives Proc. Appl. Bot., Genet. and Breeders 52, N 1:222–241.
[6] Kihara H. 1951 Substitution of nucleus and its effects on genome manifestation Cytologia 16:177–193.
[7] McIntosh R., Dubcovsky J., Rogers W., Morris C., Appels R., Xia X. 2010 Catalogue of gene symbols for wheat Annu. Wheat Newslet, suppl 56:273–282.
[8] Mujeeb-Kazi A., Delgado R., Cortes A., Cano S., Rosas V., Sanchez J. 2004 Progress in exploiting Aegilops tauschii for wheat improvement Annu. Wheat Newslet 50:79–88.
[9] Fedorova V. R. 2004 Differences in effects of photoperiod response genes in winter bread wheat PhD thesis: 03.00.15 Plant breeding and genetic institute Odessa, 19 p.
[10] Stelmach A. F., Martynyuk V. R. Influence of photoperiod response genes on the formation of a cone growth of winter wheat under autumn sowing. Agroekology and Biotechnology. 1998. N 2:183–189.
[11] Mosaad M., Ortiz Ferrara G., Machalakshmi V., Rajaram S. 1995 Vernalisation and photoperiod response of adapted wheat from Mediterranean region J. Genet. and Breed 49, N 3 P. 229–235.
[12] Stelmakh A. F. 1998 Genetic systems that regulate flowering response in wheat Wheat: prospects for global improvement Dordrecht: Kluwer Acad. Publ.,:491–501.
[13] Cockram J., Huw J., Leigh F., O'Sullivan D., Powell W., Laurie D. A., Greenland A. J. 2007 Control of flowering time in temperate cereals: genes, domestication and sustainable productivity J. Exp. Bot 58, N 6:1231–1244.
[14] Kuznetsova E. S. To the knowledge of the nature of «hibernating» crop Proceedings of Applied Botany, Genetics and Plant Breeding. 1960. 32, N 2:249–258.
[15] Oleynikov T. V. 1961 Effect of day length and temperature on the formation of rudimentary spike in cereals Morphogenesis of plants Moscow: Izd. Moscow State University, Vol. 1 P. 133–170.
[16] Guo Z., Song Y., Zhou R., Ren Z., Jia J. 2010 Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene New Phytol 185, N 3:841–851.
[17] Beales J., Turner A., Griffiths S., Snape J. W., Laurie D. A. A 2007 Pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) Theor. Appl. Genet 115, N 5:721–733.
[18] Using of PCR analysis in genetic and breeding studies 1998 Ed. Yu. M. Sivolap Kiev: Agricultural Sciences, 33 p.
[19] Promega Technical Manual. Gene Print. STR Systems New York, 1999 Is. 7 52 p.
[20] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990 Basic local alignment search tool J. Mol. Biol 215, N 5:403–410.
[21] Thompson J. D., Higgins D. G., Gibson T. J. 1994 CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice Nucleic Acids Res 22, N 22:4673–4680.
[22] Huang L. Wang Q., Zhang L., Yuan Z., Wang J., Zhang H., Zheng Y., Liu D. Haplotype variations of gene Ppd-D1 in Aegilops tauschii and their implications on wheat origin Genet. Resour. Crop. Evol 2011 2.
[23] Wilhelm E. P., Turner A. S., Laurie D. A. 2009 Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.) Theor. Appl. Genet 118, N 2:285–294.
[24] Lifenko S. F., Erinyak N. I., Nargan T. N. Selection of varieties of winter wheat intensive type Col. of Scientific Works.– Odessa: Plant Breeding and Genetics Institute – NACNAIS, 2002: 22–42.
[25] Litvinenko N. A., Kozlov V. V. The possibility of different combinations of sensitivity to day length and vernalization requirements in winter wheat genotypes Science-Tech. bulletin. VSGI. 1986 4, N 66: 5–11.
[26] Muterko O. F., Balashova I. A. Using of multiplex STS-PCR to determinate genotypes of Ppd-D1 in wheat varieties 2nd International Conf. «Regulation of plant growth: physiological, biochemical and genetic aspects» (11–13 October, 2011.). Kharkiv, 2011:81–82.
[27] Law C., Scarth R. 1984 Genetics and its potential for understanding the action of light in flowering Light and the flowering prosess / Eds D. Vince-Prue, B. Thomas, K. E. Cockshull London: Acad. press,:193–209.
[28] Andeden E., Yediay F., Baloch F., Shaaf S., Kilian B., Nachit M., Ozkan H. 2011 Distribution of vernalization and photoperiod genes (Vrn-A1, Vrn-B1, Vrn-D1, Vrn-B3, Ppd-D1) in Turkish bread wheat cultivars and landraces Cereal Res. Commun 39, N 3:352–364.
[29] Worland A., Borner A., Korzun V., Li W., Petrovic S., Sayers E. 1998 The influence of photoperiod genes to the adaptability of European winter wheats Euphytica 100, N 1–3:385–394.