Biopolym. Cell. 2012; 28(2):134-140.
Molecular and Cell Biotechnologies
Action of booster immunization with E2 CSFV on immune response elicited by marker DNA-vaccine against CSF
1Pokholenko Ia. O., 1Gulko T. P., 2Deryabina O. G., 1Kordium V. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Veterinary Medicine, NAAS of Ukraine
    30, Donetska Str., Kyiv, Ukraine, 03151


The aim was to study the influence of booster immunization with recombinant fragment of E2 CSFV on humoral immune response, elicited by candidate marker DNA-vaccine against CSF. Methods. The fragment of E2 CSFV gene has been detected by PCR, and the expression of encoded protein – by immunohistochemical analysis. The anti-E2 antibodies in blood serum after immunization have been detected by ELISA. Results. It has been shown that candidate marker DNA-vaccine transfected myocytes of murine biceps in situ. The data of immuno-histochemical analysis revealed the expression of fragment of glycoprotein E2 CSFV from the plasmid introduced. The booster immunization with recombinant E2 led to the significant increase of the titer of antibodies specific to the antigen studied. Conclusions. The data obtained show that boosting with recombinant E2 enhances humoral immune response elicited by the candidate marker DNA-vaccine against CSF.
Keywords: marker DNA-vaccine, booster immunization, humoral immune response, classical swine fever virus


[1] Beer M., Reinmann I., Hoffman B., Depner K. Novel marker vaccines against classical swine fever. Vaccine 2007 25, N 30:5665–5670.
[2] Vasilyev D. A., Lugovtcev V. Iu. The course of lectures in virology. Viruses causing diseases of swine Ulyanovsk: USAA, 2004 Part 3 85 p.
[3] Tarradas J., Alvarez B., Fraile L., Rosell R., Munoz M., Galindo-Cardiel I., Domingo M., Dominguez J., Ezquerra A., Sobrino F., Ganges L. Immunomodulatory effect of swine CCL20 chemokine in DNA vaccination against CSFV. Vet. Immunol. Immunopathol 2011 142, N 3–4:243–251.
[4] Wienhold D., Armengol E., Maroquardt A., Maroquardt C., Voigt H., Buttner M., Saalmuller A., Pfaff E. Immunomodulatory effect of plasmids co-expressing cytokines in classical swine fever virus subunit gp55/E2-DNA vaccination. Vet. Res 2005 36, N 4:571–587.
[5] Ganges L., Barrera M., Nunez J. I., Blanco I., Frias M. T., Rodriges F., Sobrino F. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge. Vaccine 2005 23, N 28:3741–3752.
[6] Makowska-Daniel I., Collins R. A., Pejsak Z. Evaluation of genetic vaccine against classical swine fever. Vaccine 2001 19, N 17–19:2480–2484.
[7] Yu X., Tu C., Li H., Hu R., Chen C., Li Z., Zhang M., Yin Z. DNA mediated protection against classical swine fever virus. Vaccine 2001 19, N 11–12:1520–1525.
[8] Pokholenko I. A., Ruban T. O., Sukhorada O. M., Deriabin O. M., Tytok T. G., Kordium V. A. The development of DNA-vaccine against classical swine fever. Biopolym. Cell 2007 23, N 2:93–99.
[9] Schneeweiss A., Chabiersli S., Salomo M., Delaroque N., Al-Robaiy S., Grunwald T., Burki K., Liebert U. G., Ulbert S. A DNA vaccine encoding the E protein of West Nile virus is protective and can be boosted by recombinant domain DIII. Vaccine 2011 29, N 37:6352–6357.
[10] Zhao H. P., Sun J. F., Li N., Sun Y., Wang Y., Qui H. J. Prime-boost immunization using alphavirus replicon and adenovirus vectored vaccines induces enhanced immune responses against classical swine fever virus in mice. Vet. Immunol. Immunopathol 2009 131, N 3–4:158–166.
[11] Hammond J. M., Jansen E. S., Morrissy C. J., Goff W. V., Meehan G. C., Williamson M. M., Lenghaus C., Sproat K. W., Andrew M. E., Coupar B. E., Johnson M. A. A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet. Microbiol 2001 80, N 2:101–119.
[12] Sambrook J., Fritsch E. E., Maniatis T. Molecular cloning Cold Spring Harbor Lab. press, 1989 625 p.
[13] Yamamoto T., Horikoshi M. Rapid preparation of plasmid templates suitable for a DNA sequences without RNAse treatment. Nucleic Acids Res 1995 23, N 16:3351–3352.
[14] Current protocols in molecular biology / Eds F. M. Ausubel et al New York: John Wiley & Sons, Inc., 1997 Vol. 1:1.7.9–1.7.10.
[15] DNA vaccines: methods and protocols / Eds D. B. Lawrie, R. G. Whalen New York: Humana press, 2000 529 p.
[16] Deryabin O., Kulinich R., Deryabina O., Reznik V. Protective properties of the Classical Swine fever virus E2 recombinant protein expressed in E. coli. Herald of Bila Tserkva National Agrarian University 2005 31:151–158.
[17] Dupuis M., Denis-Mize K., Woo C., Goldbeck C., Selby M. J., Chen M., Otten G. R., Ulmer J. B., Donnelly J. J., Ott G., McDonald D. M. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J. Immunol 2000 165, N 5:2850–2858.