Biopolym. Cell. 2012; 28(2):114-120.
Structure and Function of Biopolymers
Effect of the vitamin D photosynthesis products on thermodynamic parameters of model lipid membranes
1Kasian N. A., 1Vashchenko O. V., 2Gluhova Ya. E., 1Lisetski L. N.
  1. Institute for scintillation materials, STC "Institute for Single Crystals", NAS of Ukraine
    60, Lenin ave., Kharkiv, Ukraine, 61001
  2. V. N. Karazin Kharkiv National University
    4, Svobody Sq., Kharkiv, Ukraine, 61077

Abstract

Aim. To compare effects of vitamin D (VitD), provitamin D (ProD) and its photo- and thermoisomerization products on thermodynamical parameters of hydrated dipalmitoylphoshpatidylcholine (DPPC) multilayers. Methods. Differential scanning calorimetry, UV spectroscopy. Results. A regular decrease was established in the melting temperature accompanied with the pronounced broadening of the appropriate peaks for DPPC multilayers doped with the sterols in the order ProD3 < < ProD3 + UV < ProD3 + UV + dark storage < VitD3. Conclusions. The destabilizing effect of VitD3 on the membrane appeared to be stronger than that of ProD3 and its photoisomerization products. This can facilitate VitD3 withdrawal from the membrane into intercellular space under its biosinthesis in vivo. A possible molecular mechanism of the phenomena observed is related to the higher conformational flexibility and anisometry of VitD3 as compared to ProD3.
Keywords: phospholipid membranes, vitamin D, provitamin D, photoisomerization, differential scanning calorimetry

References

[1] Holick M. F., McLaughlin J. A., Clark M. B., Holick S. A., Potts J. T., Anderson R. R., Blank I. H., Parrish J. A., Elias P. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 1980 210, N 4466:203–205.
[2] Verloop A., Koevoet A. L., Havinga E. Studies on vitamin D and related compounds III. Short communications on the cis-transisomerization of calciferol and properties of «trans»-vitamin D2. Rec. Trav. Chim 1955 74, N 9:1125–1130.
[3] Jacobs H. J. C., Havinga E. Photochemistry of Vitamin D and its isomers and of simple trienes. Adv. Photochem 1979–11:305–373.
[4] Yakhimovich R. I. Chemistry of vitamins D Kyiv: Naukova dumka, 1978 248 p.
[5] Werner F., Lochbrunner S. The wavelength dependence of the photochemistry of previtamin D. J. Photochem. Photobiol. A: Chem 1997 105, N 2–3:159–164.
[6] Dmitrenko O. F., Frederick J. H., Reischl W. Previtamin D conformations and the wavelength-dependent photoconversions of previtamin D. J. Photochem. Photobiol. A: Chem 2001 139, N 2:125–131.
[7] Terenetskaya I. P., Vysotskiy L. H., Bogoslovskiy N. A., Luknitskiy F. I. The ways of previtamin D photosynthesis optimization under irradiation with erythema lamp. Khim. Pharm. Zhur 1993 27, N 4:55–59.
[8] MacLaughlin J. A., Anderson R. R., Holick M. F. Spectral character of sunlight modulates photosynthesis of provitamin D3 and its photoisomers in human skin. Science 1982 216, N 4549:1001–1003.
[9] Tian X. Q., Holick M. F. A liposomal model that mimics the cutaneous production of vitamin D3. Studies of the mechanism of the membrane-enhanced thermal isomerization of previtamin D3 to vitamin D3. J. Biol. Chem 1999 274, N 7:4174–4179.
[10] Moriarty R. M., Schwartz R. N., Lee C., Curtis V. Formation of vitamin D3 in synthetiic lipid multibilayers. A model for epidermal photosynthesis. J. Am. Chem. Soc 1980 102, N 12:4257–4259.
[11] Yamamoto J. K., Borch R. F. Photoconversion of 7-dehydrocholesterol to vitamin D3 in synthetic phospholipid bilayers. Biochemistry 1985 24, N 13:3338–3344.
[12] Holick M. F., Tian X. Q., Allen M. Evolutionary importance for the membrane enhancement of the production of vitamin D3 in the skin of poikilothermic animals. Proc. Natl Acad. Sci. USA 1995 92, N 8:3124–3126.
[13] Tian X. Q., Chen T. Ch., Matsuoka L. Y., Wortsman J., Holick M. F. Kinetic and thermodynamic studies of the conversion of provitamin D3 to vitamin D3 in human skin. J. Biol. Chem 1993 268, N 20:14888–14892.
[14] Cassis E. G. Jr., Weiss R. G. Liquid-crystalline solvents as mechanistic probes – V. An investigation of the effect of cholesteric order on the formation rates of vitamin D3 from pre-vitamin D3 and of the pre-vitamin D3 from vitamin D3. Photochem. Photobiol 1982 35, N 4:439–444.
[15] Gvozdovsky I. A., Terenetskaya I. P. Comparative study of the provitamin D photoisomerization kinetics in ethanol and liquid crystal. Functional Materials 2000 7, N 3:508–512.
[16] Terenetskaya I. P., Dmitrenko O. G., Eremenko A. M. Photoisomerization of provitamin D in dispersive systems. J. Mol. Struct 1990 219, N 1–2:359–364.
[17] Tian X. Q., Holick M. F. Catalyzed thermal isomerization between provitamin D3 and vitamin D3 via beta-cyclodextrin complexation. J. Biol. Chem 1995 270, N 15:8706–8711.
[18] Cournia Z., Ullmann G. M., Smith J. C. Differential effects of cholesterol, ergosterol and lanosterol on dipalmitoyl phosphatidylcholine membrane: a molecular dynamics simulation study. J. Phys. Chem. B 2007 111, N 7:1786–1801.
[19] Kazanci N., Toyran N., Haris P. I., Severcan F. Vitamin D2 at high and low concentrations exert opposing effects on molecular order and dynamics of dipalmitoyl phosphatidylcholine membranes. Spectroscopy 2001 15, N 2:47–55.
[20] Tolosa de Talamoni N., Morero R., Canas F. Vitamin D3 administration increases the membrane fluidity of intestinal mitochondria. Biochem. Int 1989 19, N 4 :701–707.
[21] Castelli F., Gurrieri S., Raudino A., Cambria A. Effect of cholecalcipherol on thermotropic behaviour of phosphatidylethanolamine and its N-methyl derivatives. Chem. Phys. Lipids 1988 4, N 1–2:69–76.
[22] Toyran N., Severcan F. Competitive effect of vitamin D2 and Ca2+ on phospholipid model membranes: an FTIR study. Chem. Phys. Lipids 2003 123, N2:165–176.
[23] Toyran N., Severcan F. The effect of magnesium ions on vitamin D(2)-phospholipid model membrane interactions in the presence of different buffer media. Talanta 2000 53, N 1:23–27.
[24] Eker F., Durmus H. O., Akinoglu B. G., Severcan F. Application of turbidity technique on peptide-lipid and drug-lipid interactions. J. Mol. Struct 1999 482–483, N 1–3:693–697.
[25] Bondar O. P., Rowe E. S. Differential scanning calorimetric study of the effect of vitamin D3 on the thermotropic phase behaviour of lipid model systems. Biochim. Biophys. Acta 1995 1240, N 2:125–132.
[26] Merz K., Sternberg B. Incorporation of vitamin D3-derivatives in liposomes of different lipid types. J. Drug Target 1994 2, N 5:411–417.
[27] Ivkov V. G., Berestovskiy G. N. Dynamic structure of lipid bilayer Moscow: Nauka, 1981 296 p.
[28] Wack D. C., Webb W. W. Synchrotron X-ray study of the modulated lamellar phase Pb, in the lecithin-water system. Phys. Rev. A 1989 40, N 5:2712–2730.
[29] Antonov V. F., Smirnova E. Y., Shevchenko E. V. Lipid membranes under phase transformations Moscow: Nauka, 1992 135 p.
[30] Lisetski L. N., Panikarskaya V. D., Kasyan N. A., Grishchenko L. V., Terenetskaya I. P. Bioequivalent UV detectors based on cholesteric liquid crystals: effects of spectral composition and quantitative account for intensity of UV radiation. Proc. SPIE 2005 6023, 6023OF1 4 p.
[31] Okamura W. H., Midland M. M., Hammond M. W., Rahman N. Abd., Dormanen M. C., Nemere I., Norman A. W. Chemistry and conformation of vitamin D molecules. J. Steroid Biochem. Mol. Biol 1995 53, N 1–6:603–613.