Biopolym. Cell. 2012; 28(2):103-113.
Kombucha microbiome as a probiotic: a view from the perspective of post-genomics and synthetic ecology
1Kozyrovska N. O., 2, 3Reva O. M., 4Goginyan V. B., 5de Vera J.-P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. D. K. Zabolotny Institute of Microbiology and Virology, NAS of Ukraine
    154, Academika Zabolotnogo Str., Kyiv, Ukraine, 03680
  3. Department of Biochemistry, Bioinformatics and Computational Biology Unit, University of Pretoria
    Lynnwood road, Hillcrest, Pretoria, South Africa, 0002
  4. SPC "Armbiotechnology", NAS of Republic of Armenia
    14, Gyurjyan Str., Yerevan, Republic of Armenia, 0056
  5. Institute of Planetary Research, DLR, Germany
    Rutherfordstr. 2D-12489, Berlin, Germany


Probiotics are essential for establishing and maintaining optimal immune health. The probiotic therapy is known from alternative medicine for ages; however, the recent demonstration of the normal microflora to induce innate immunity has introduced the science-based concept of therapeutic application of potentially beneficial probiotic microorganisms for a treatment of functional disorders. Traditionally, probiotics are associated with dairy products, however, novel formulations are needed, first of all, originated from naturally occurring symbiotic microbial communities as the most robust assemblages. Especially, safe and robust probiotics are needed for long-term expeditions, outposts, extraterrestrial permanently-manned bases, where humans are exposed to adverse environmental factors. Kombucha beverage is Symbiotic Culture of Bacteria and Yeast (SCOBY) and associated with health-promoting effects. Kombucha tea/mat is being in use in human livings within millennia as a probiotic drink for healing and health prophylaxis effects, however, new research opportunities promise its «renaissance», going to be used pharmacologically.
Keywords: probiotics, kombucha microbiome, post-genomics, synthetic ecology


[1] Fukushima Y., Hurt E. Probiotics health claims in Japan and Europe. Lactic acid bacteria and bifidobacteria: Current progress in advanced research / Eds K. Sonomoto, A. Yokota Hokkaido: Caister Acad. Press, 2011 286 p.
[2] Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10.
[3] Danielian LT. To chemical content and physiological and morphological properties of Kombucha’s cultural liquid. Transactions of YSZVI 1957 22:111–121.
[4] Mayser P, Fromme S, Leitzmann C, Gr?nder K. The yeast spectrum of the 'tea fungus Kombucha'. Mycoses. 1995;38(7-8):289-95.
[5] Teoh AL, Heard G, Cox J. Yeast ecology of Kombucha fermentation. Int J Food Microbiol. 2004;95(2):119-26.
[6] Kurtzman CP, Robnett CJ, Basehoar-Powers E. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'. FEMS Yeast Res. 2001;1(2):133-8.
[7] Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol. 2007;57(Pt 2):353-7.
[8] Dutta D, Gachhui R. Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from Kombucha tea. Int J Syst Evol Microbiol. 2006;56(Pt 8):1899-903.
[9] Jayabalan R., Malini K., Sathishkumar M., Swaminathan K., Yun S.-E. Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci. Biotechnol 2010 19, N 3:843–847.
[10] Bauer-Petrovska B., Petrushevska-Tozi L. Mineral and water soluble vitamin content in the Kombucha drink. Int. J. Food Sci. Technol 2000 35, N 2:201–205.
[11] Velicanski A. S., Cvetkovic D. D., Markov S. L., Tumbas V. T., Savatovic S. M. Antimicrobial and antioxidant activity of lemon balm Kombucha. Acta periodica technologica 2007 38 P. 165–172.
[12] Danielian L.T. Tea fungus Yerevan: Publ. house «Armenia», 1993 112 p.
[13] Goginyan V. B. Antioxidant properties of Tea fungus (Kombucha) and its microflora. Biol. J. Armenia 2001 53:296– 299.
[14] Danielian L. T. Kombucha – biological features Yerevan: Publ. house «Asogik», 2002 256 p.
[15] Cetojevic-Simin D. D., Bogdanovic G. M., Cvetkovic D. D., Velicanski A. S. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha. J. BUON 2008 13, N 3:395–401.
[16] Gharib O. A. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats. Chin. Med 2009 4:23.
[17] Yapar K., Cavusoglu K., Oruc E., Yalcin E. Protective effect of kombucha mushroom (KM) tea on phenol-induced cytotoxicity in albino mice. J. Environ. Biol 2010 31, N 5:615–621.
[18] Yang Z.-W., Ji B.-P., Zhou F., Li B., Luo Y., Yang L., Li T. Hypocholesterolaemic and antioxidant effects of kombucha tea in high-cholesterol fed mice. J. Sci. Food Agricult 2009 89, N 1:150–156.
[19] Banerjee D., Hassarajani S. A., Maity B., Narayan G., Bandyopadhyay S. K., Chattopadhyay S. Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: possible mechanism of action. Food Funct 2010 1, N 3:284–293.
[20] Cavusoglu K., Guler P. Protective effect of kombucha mushroom (KM) tea on chromosomal aberrations induced by gamma radiation in human peripheral lymphocytes in vitro. J. Environ. Biol 2010 31, N 5:851–856.
[21] Bhattacharya S., Gachhui R., Sil P. C. Hepatoprotective properties of kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology 2011 18, N 3 P. 221–234.
[22] Danielian L., Avagyan A. Influence of cultural liquid of Kombucha to immune system within the intestinal chicken infections. Biol. J. Armenia 2001 53:200–205.
[23] Murugesan G. S., Sathishkumar M., Swaminathan K. Supplementation of waste tea fungal biomass as a dietary ingredient for broiler chicks. Bioresource Technol 2005 96, N 16:1743– 1748.
[24] Nguyen V. T., Gidley M. J., Dykes G. A. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 2008 25, N 3 P. 471–478.
[25] Yadav V., Panilaitis B., Shi H., Numuta K., Lee K., Kaplan D. L. N-acetylglucosamine 6-phosphate deacetylase (nagA) is required for N-acetyl gucosamine assimilation in Gluconacetobacter xylinus. PLoS One 2011 6, N 6 e18099.
[26] Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E. Metagenomic analysis of the human distal gut microbiome. Science 2006 312, N 5778:1355–1359.
[27] Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., Semenkovich C. F., Gordon J. I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 2004 101, N 44:15718–15723.
[28] Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. Diversity of the human intestinal microbial flora. Science 2005 308, N 5728:1635–1638.
[29] Nam Y. D., Jung M. J., Roh S. W., Kim M. S., Bae J. W. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One 2011 6, N 7 e22109.
[30] Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996 86, N 6:973–983.
[31] Poltorak A., He X., Smirnova I., Liu M. Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998 282, N 5396:2085–2088.
[32] Steinman R. M., Cohn Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice I. Morphology, quantification, tissue distribution. J. Exp. Med 1973 137, N 5:1142– 1162.
[33] Bowie A. G., Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol 2008 8, N 12:911–922.
[34] Inohara N., Nunez G. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol 2003 3, N 5:371–382.
[35] Meylan E., Tschopp J., Karin M. Intracellular pattern recognition receptors in the host response. Nature 2006 442, N 7098:39–44.
[36] Takeda K., Kaisho T., Akira S. Toll-like receptors. Annu. Rev. Immunol 2003 21:335–376.
[37] Yoneyama M., Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J. Biol. Chem 2007 282, N 21 P. 15315–15318.
[38] Zhao Y., Yang J., Shi J., Gong Y. N., Lu Q., Xu H., Liu L., Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011 477, N 7366 P. 596–600.
[39] Aggarwal S., Ghilardi N., Xie M. H., de Sauvage F. J., Gurney A. L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem 2003 278, N 3:1910–1914.
[40] Takahashi T., Kuniyasu Y., Toda M., Sakaguchi N., Itoh M., Iwata M., Shimizu J., Sakaguchi S. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and autoimmune disease by breaking their anergic/suppressive state. Int. Immunol 1998 10, N 12:1969–1980.
[41] Livolsi A., Busuttil V., Imbert V., Abraham R. T., Peyron J. F. Tyrosine phosphorylation-dependent activation of NF-kB requirement for p56 LCK and ZAP-70 protein tyrosine kinases. Eur. J. Biochem 2001 268, N 5:1508–1515.
[42] Perkins N. D. Integrating cell-signalling pathways with NF-kB and IKK function. Nat. Rev. Mol. Cell Biol 2007 8, N 1 P. 49–62.
[43] Heuvelin E., Lebreton C., Grangette C., Pot B., Cerf-Bensussan N., Heyman M. Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 2009 4, N 4 e5184.
[44] Petrof E. O., Claud E. C., Sun J., Abramova T., Guo Y., Waypa T. S., He S. M., Nakagawa Y., Chang E. B. Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm. Bowel Dis 2009 15, N 10:1537–1547.
[45] Ben-Neriah Y., Schmidt-Supprian M. Epithelial NF-kappaB maintains host gut microflora homeostasis. Nat. Immunol 2007 8, N 5:479–481.
[46] Kelly D., Campbell J. I., King T. P., Grant G., Jansson E. A., Coutts A. G., Pettersson S., Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shutting of PPAR-gamma and ReIA. Nat. Immunol 2004 5, N 1:104–112.
[47] Hall J. A., Bouladoux N., Sun C. M., Wohlfert E. A., Blank R. B., Zhu Q., Grigg M. E., Berzofsky J. A., Belkaid Y. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008 29, N 4:637–649.
[48] Atarashi K., Nishimura J., Shima T., Umesaki Y., Yamamoto M., Onoue M., Yagita H., Ishii N., Evans R., Honda K., Takeda K. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008 455, N 7214:808–812.
[49] Lakhdari O., Tap J., Beguet-Crespel F., Le Roux K., de Wouters T., Cultrone A., Nepelska M., Lefevre F., Dore J., Blottiere H. M. Identification of NF-kB modulation capabilities within human intestinal commensal bacteria. J. Biomed. Biotechnol 2011 2011:282356.
[50] Lathrop S. K., Bloom S. M., Rao S. M., Nutsch K., Lio C. W., Santacruz N., Peterson D. A., Stappenbeck T. S., Hsieh C. S. Peripheral education of the immune system by colonic commensal microbiota. Nature 2011 478, N 7368:250–254.
[51] Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., Taniguchi T., Takeda K., Hori S., Ivanov I. I., Umesaki Y., Itoh K., Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011 331, N 6015:337–341.
[52] Gaboriau-Routhiau V., Rakotobe S., Lecuyer E., Mulder I., Lan A., Bridonneau C., Rochet V., Pisi A., De Paepe M., Brandi G., Eberl G., Snel J., Kelly D., Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009 31, N 4 P. 677– 689.
[53] Round J. L., Mazmanian S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 2010 107, N 27 P. 12204–12209.
[54] Allison K. R., Brynildsen M. P., Collins J. J. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011 473, N 7346:216–220.
[55] Dicksved J., Floistrup H., Bergstrom A., Rosenquist M., Pershagen G., Scheynius A., Roos S., Alm J. S., Engstrand L., Braun-Fahrlander C., von Mutius E., Jansson J. K. Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl. Environ. Microbiol 2007 73, N 7 P. 2284–2289.
[56] Mueller S., Saunier K., Hanisch C., Norin E., Alm L., Midtvedt T., Cresci A., Silvi S., Orpianesi C., Verdenelli M. C., Clavel T., Koebnick C., Zunft H. J., Dore J., Blaut M. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol 2006 72, N 2:1027–1033.
[57] Blaser M. J., Falkow S. What are the consequences of the disappearing human microbiota?. Nat. Rev. Microbiol 2009 7, N 12 P. 887–894.
[58] Turnbaugh P. J., Ley R. E., Mahowald M. A., Magrini V., Mardis E. R., Gordon J. I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 444, N 7122:1027–1031.
[59] Cani P. D., Amar J., Iglesias M. A., Poggi M., Knauf C., Bastelica D., Neyrinck A. M., Fava F., Tuohy K. M., Chabo C., Waget A., Delmee E., Cousin B., Sulpice T., Chamontin B., Ferrieres J., Tanti J. F., Gibson G. R., Casteilla L., Delzenne N. M., Alessi M. C., Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007 56, N 7:1761–1772.
[60] Holmes E., Loo R. L., Stamler J., Bictash M., Yap I. K., Chan Q., Ebbels T., De Iorio M., Brown I. J., Veselkov K. A., Daviglus M. L., Kesteloot H., Ueshima H., Zhao L., Nicholson J. K., Elliott P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008 453, N 7193 P. 396–400.
[61] O’Keefe S. J. Nutrition and colonic health: The critical role of the microbiota. Curr. Opin. Gastroenterol 2008 24, N 1:51–58.
[62] Lee Y. K., Menezes J. S., Umesaki Y., Mazmaniana S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 2011 108, Suppl. 1:4615–4622.
[63] Drakes M., Blanchard T., Czinn S. Bacterial probiotic modulation of dendritic cells. Infect. Immun 2004 72, N 6:3299– 3309.
[64] Hegazy S. K., El-Bedewy M. M. Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J. Gastroenterol 2010 16, N 33:4145–4151.
[65] Castillo N. A., Perdigon G., de Moreno de LeBlan A. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 2011 11:177.
[66] Schlee M., Harder J., Koten B., Stange E. F., Wehkamp J., Fellermann K. Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin. Exp. Immunol 2008 151, N 3:528– 535.
[67] de LeBlanc Ade M., Castillo N. A., Perdigon G. Anti-infective mechanisms induced by a probiotic Lactobacillus strain against Salmonella enterica serovar Typhimurium infection. Int J. Food Microbiol 2010 138, N 3:223–231.
[68] Schiffrin E. J., Rochat F., Link-Amster H., Aeschlimann J. M., Donnet-Hughes A. Immunomodulation of human blood cells following the ingestion of lactic acid bacteria. J. Dairy Sci 1994 78, N 3:491–497.
[69] Ghadimi D., Folster-Holst R., de Vrese M., Winkler P., Heller K. J., Schrezenmeir J. Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects. Immunobiology 2008 213, N 8:677–692.
[70] Duary R. K., Bhausaheb M. A., Batish V. K., Grover S. Anti-inflammatory and immunomodulatory efficacy of indigenous probiotic Lactobacillus plantarum Lp91 in colitis mouse model. Mol. Biol. Rep 2012 39(4)4765-4775
[71] Amdekar S., Singh V., Singh D. D. Probiotic therapy: immunomodulating approach toward urinary tract infection. Curr. Microbiol 2011 63, N 5:484–490.
[72] Schwab M., Reynders V., Loitsch S., Steinhilber D., Schroder O., Stein J. The dietary histone deacetylase inhibitor sulforaphane induces human beta-defensin-2 in intestinal epithelial cells. Immunology 2008 125, N 2:241–251.
[73] Corr S. C., Li Y., Riedel C. U., O’Toole P. W., Hill C., Gahan C. G. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 2007 104, N 18:7617–7621.
[74] Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura Y., Tobe T., Clarke J. M., Topping D. L., Suzuki T., Taylor T. D., Itoh K., Kikuchi J., Morita H., Hattori M., Ohno H. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011 469, N 7331:543–547.
[75] Sonnenburg J. L., Chen C. T., Gordon J. I. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 2006 4, N 12 e413.
[76] Bravo J. A., Forsytheb P., Chewb M. V., Escaravageb E., Savignaca H. M., Dinana T. G., Bienenstockb J., Cryana J. F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 2011 108, N 38:16050– 16055.
[77] Kozyrovska N., Foing B. H. Kombucha might be promising probiotics for consumption on the Moon. Abstract Book COSPAR 38 (Bremen, Germany, 2010) Bremen, 2010:3.
[78] Ovcharenko L. P., Kozyrovska N. O. Metagenomic analysis for microbial ecology and biotechnology. Biopolym. Cell 2008 24, N 3:199–211.
[79] Baugher J. L., Klaenhammer T. R. Invited review: Application of omics tools to understanding probiotic functionality. J. Dairy Sci 2011 94, N 10:4753–4765.
[80] Dunham M. J. Synthetic ecology: A model system for cooperation. Proc. Natl Acad. Sci. USA 2007 104, N 6:1741–1742