Biopolym. Cell. 2012; 28(2):83-92.
Current approaches to improve the anticancer chemotherapy with alkylating agents: state of the problem in world and Ukraine
1Iatsyshyna A. P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Alkylating agents are frequently used in many established anticancer chemotherapies. They alkylate the genomic DNA at various sites. Alkylation of the guanine at the O6-position is cytotoxic, it has the strongest mutagenic potential, as well as can cause the tumor development. Alkyl groups at the O6-position of guanine are removed by the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). The effectiveness of alkylating chemotherapy is limited by MGMT in cancer cells and adverse toxic side effects in normal cells. Different approaches consisting in the modulation of the MGMT expression and activity are under development now to improve the cancer chemotherapy. They include two main directions, in particular, the increase in chemosensitivity of cancer cells to alkylating drugs and the protection of normal cells from the toxic side effects of chemotherapy. This review is focused on current attempts to improve the alkylating chemotherapy of malignant tumours worldwide and state of the issue in Ukraine.
Keywords: cancer chemotherapy, strategies of chemotherapy improvement, alkylating agents, O6-methylguanine-DNA methyltransferase (MGMT), DNA repair


[1] Kaina B., Christmann M., Naumann S., Roos W. P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents DNA Repair (Amst) 2007 6, N 8:1079–1099.
[2] Verbeek B., Southgate T. D., Gilham D. E., Margison G. P. O6Methylguanine-DNA methyltransferase inactivation and chemotherapy Br. Med. Bull 2008 85, N 1:17–33.
[3] Hansen W. K., Kelley M. R. Review of mammalian DNA repair and translational implications J. Pharmacol. Exp. Ther 2000 295, N 1:1–9.
[4] Christmann M., Tomicic M. T., Roos W. P., Kaina B. Mechanisms of human DNA repair: an update Toxicology 2003 193, N 1–2:3–34.
[5] Scharer O. D. Chemistry and biology of DNA repair Angew. Chem. Int. Ed. Engl 2003 42, N 26:2946–2974.
[6] Christmann M., Pick M., Lage H., Schadendorf D., Kaina B. Acquired resistance of melanoma cells to the antineoplastic agent fotemustine is caused by reactivation of the DNA repair gene MGMT Int. J. Cancer 2001 92, N 1:123–129.
[7] Jiang H., Alonso M. M., Gomez-Manzano C., Piao Y., Fueyo J. Oncolytic viruses and DNA-repair machinery: overcoming chemo resistance of gliomas Expert Rev. Anticancer Ther 2006 6, N 11:1585–1592.
[8] Alonso M. M., Gomez-Manzano C., Bekele B. N., Yung W. K., Fue yo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter Cancer Res 2007 67, N 24:11499–11504.
[9] Zhang J., Stevens M. F., Laughton C. A., Madhusudan S., Bradshaw T. D. Acquired resistance to temozolomide in glioma cell lines: molecular mechanisms and potential translational applications Oncology 2010 78, N 2:103–114.
[10] Sarkaria J. N., Kitange G. J., James C. D., Plummer R., Calvert H., Weller M., Wick W. Mechanisms of chemoresistance to alkylating agents in malignant glioma Clin. Cancer Res 2008 14, N 10:2900–2908.
[11] Hegi M. E., Diserens A. C., Gorlia T., Hamou M. F., de Tribolet N., Weller M., Kros J. M., Hainfellner J. A., Mason W., Mariani L., Bromberg J. E., Hau P., Mirimanoff R. O., Cairncross J. G., Janzer R. C., Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma N. Engl. J. Med 2005 352, N 10:997–1003.
[12] Riemenschneider M. J., Hegi M. E., Reifenberger G. MGMT promoter methylation in malignant gliomas Target Oncol 2010 5, N 3:161–165.
[13] Soejima H., Zhao W., Mukai T. Epigenetic silencing of the MGMT gene in cancer Biochem. Cell Biol 2005–83, N 4 P. 429–437.
[14] Garber K. China approves world’s first oncolytic virus therapy for cancer treatment J. Natl Cancer Inst 2006 98, N 5 P. 298–300.
[15] Kumar S., Gao L., Yeagy B., Reid T. Virus combinations and chemotherapy for the treatment of human cancers Curr. Opin. Mol. Ther 2008 10, N 4:371–379.
[16] Yu W., Fang H. Clinical trials with oncolytic adenovirus in China Curr. Cancer Drug Targets 2007 7, N 2:141– 148.
[17] Kuo C. C., Liu J. F., Chang J. Y. DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors J. Pharmacol. Exp. Ther 2006 316, N 2:946–954.
[18] Kato T., Natsume A., Toda H., Iwamizu H., Sugita T., Hachisu R., Watanabe R., Yuki K., Motomura K., Bankiewicz K., Wakabayashi T. Efficient delivery of liposome-mediated MGMTsiRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells Gene Ther 2010 17, N 11:1363–1371.
[19] Lyman G. H. Impact of chemotherapy dose intensity on cancer patient outcomes J. Natl Compr. Canc. Netw 2009 7, N 1 P. 99–108.
[20] Neyns B., Tosoni A., Hwu W. J., Reardon D. A. Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects Cancer 2010 116, N 12:2868–2877.
[21] Sill H., Olipitz W., Zebisch A., Schulz E., Wolfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics Br. J. Pharmacol 2011 162, N 4:792–805.
[22] McMurry T. B. MGMT inhibitors – the Trinity College-Paterson Institute experience, a chemist’s perception DNA Repair (Amst) 2007 6, N 8:1161–1169.
[23] Middleton M. R., Margison G. P. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway Lancet Oncol 2003 4, N 1:37–44.
[24] Kaina B., Margison G. P., Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy Cell. Mol. Life Sci 2010 67, N 21 P. 3663–3681.
[25] Schilsky R. L., Dolan M. E., Bertucci D., Ewesuedo R. B., Vogelzang N. J., Mani S., Wilson L. R., Ratain M. J. Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer Clin. Cancer Res 2000 6, N 8:3025–3031.
[26] Quinn J. A., Jiang S. X., Carter J., Reardon D. A., Desjardins A., Vredenburgh J. J., Rich J. N., Gururangan S., Friedman A. H., Bigner D. D., Sampson J. H., McLendon R. E., Herndon J. E. II, Threatt S., Friedman H. S. Phase II trial of Gliadel plus O6-benzylguanine in adults with recurrent glioblastoma multiforme Clin. Cancer Res 2009 15, N 3:1064–1068.
[27] Quinn J. A., Desjardins A., Weingart J., Brem H., Dolan M. E., Delaney S. M., Vredenburgh J., Rich J., Friedman A. H., Reardon D. A., Sampson J. H., Pegg A. E., Moschel R. C., Birch R., McLendon R. E., Provenzale J. M., Gururangan S., Dancey J. E., Maxwell J., Tourt-Uhlig S., Herndon J. E. II, Bigner D. D., Friedman H. S. Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma J. Clin. Oncol 2005 23, N 28:7178–7187.
[28] Clemons M., Kelly J., Watson A. J., Howell A., McElhinney R. S., McMurry T. B., Margison G. P. O6-(4-bromothenyl)guanine reverses temozolomide resistance in human breast tumour MCF7 cells and xenografts Br. J. Cancer 2005 93, N 10 P. 1152–1156.
[29] Turriziani M., Caporaso P., Bonmassar L., Buccisano F., Amadori S., Venditti A., Cantonetti M., D’Atri S., Bonmassar E. O6(4-bromothenyl)guanine (PaTrin-2), a novel inhibitor of O6-alkylguanine DNA alkyl-transferase, increases the inhibitory activity of temozolomide against human acute leukaemia cells in vitro Pharmacol. Res 2006 53, N 4:317–323.
[30] Middleton M. R., Kelly J., Thatcher N., Donnelly D. J., McElhinney R. S., McMurry T. B. H., McCormick J. E., Margison G. P. O6-(4-bromothenyl)guanine improves the therapeutic index of temozolomide against A375M melanoma xenografts Int. J. Cancer 2000 85, N 2:248–252.
[31] Barvaux V. A., Lorigan P., Ranson M., Gillum A. M., McElhinney R. S., McMurry T. B., Margison G. P. Sensitization of a human ovarian cancer cell line to temozolomide by simultaneous attenuation of the Bcl-2 antiapoptotic protein and DNA repair by O6-alkylguanine-DNA alkyltransferase Mol. Cancer Ther 2004 3, N 10:1215–1220.
[32] Ranson M., Middleton M. R., Bridgewater J., Lee S. M., Dawson M., Jowle D., Halbert G., Waller S., McGrath H., Gumbrell L., McElhinney R. S., Donnelly D., McMurry T. B., Margison G. P. Lomeguatrib, a potent inhibitor of O6-alkylguanine-DNA-alkyltransferase: phase I safety, pharmacodynamic, and pharmacokinetic trial and evaluation in combination with temozolomide in patients with advanced solid tumors Clin. Cancer Res 2006 12, N 5:1577–1584.
[33] Ranson M., Hersey P., Thompson D., Beith J., McArthur G. A., Haydon A., Davis I. D., Kefford R. F., Mortimer P., Harris P. A., Baka S., Seebaran A., Sabharwal A., Watson A. J., Margison G. P., Middleton M. R. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma J. Clin. Oncol 2007 25, N 18:2540–2545.
[34] Khan O. A., Ranson M., Michael M., Olver I., Levitt N. C., Mortimer P., Watson A. J., Margison G. P., Midgley R., Middleton M. R. A phase II trial of lomeguatrib and temozolomide in metastatic colorectal cancer Br. J. Cancer 2008 98, N 10:1614–1618.
[35] Sabharwal A., Corrie P. G., Midgley R. S., Palmer C., Brady J., Mortimer P., Watson A. J., Margison G. P., Middleton M. R. A phase I trial of lomeguatrib and irinotecan in metastatic colorectal cancer Cancer Chemother. Pharmacol 2010 66, N 5:829–835.
[36] Kefford R. F., Thomas N. P., Corrie P. G., Palmer C., Abdi E., Kotasek D., Beith J., Ranson M., Mortimer P., Watson A. J., Margison G. P., Middleton M. R. A phase I study of extended dosing with lomeguatrib with temozolomide in patients with advanced melanoma Br. J. Cancer 2009 100, N 8:1245–1249.
[37] Leone G., Pagano L., Ben-Yehuda D., Voso M. T. Therapy-related leukemia and myelodysplasia: susceptibility and incidence Haematologica 2007 92, N 10:1389–1398.
[38] Ko S. H., Ueno T., Yoshimoto Y., Yoo J. S., Abdel-Wahab O. I., Abdel-Wahab Z., Chu E., Pruitt S. K., Friedman H. S., Dewhirst M. W., Tyler D. S. Optimizing a novel regional chemotherapeutic agent against melanoma: hyperthermia-induced enhancement of temozolomide cytotoxicity Clin. Cancer Res 2006 12, N 1:289–297.
[39] Ueno T., Ko S. H., Grubbs E., Yoshimoto Y., Augustine C., Abdel-Wahab Z., Cheng T. Y., Abdel-Wahab O. I., Pruitt S. K., Friedman H. S., Tyler D. S. Modulation of chemotherapy resistance in regional therapy: a novel therapeutic approach to advanced extremity melanoma using intra-arterial temozolomide in combination with systemic O6-benzylguanine Mol. Cancer Ther 2006 5, N 3:732–738.
[40] Yoshimoto Y., Augustine C. K., Yoo J. S., Zipfel P. A., Selim M. A., Pruitt S. K., Friedman H. S., Ali-Osman F., Tyler D. S. Defining regional infusion treatment strategies for extremity melanoma: comparative analysis of melphalan and temozolomide as regional chemotherapeutic agents Mol. Cancer Ther 2007 6, N 5:1492–1500.
[41] Coleman A., Augustine C. K., Beasley G., Sanders G., Tyler D. Optimizing regional infusion treatment strategies for melanoma of the extremities Expert Rev. Anticancer Ther 2009 9, N 11:1599–1609.
[42] Weingart J., Grossman S. A., Carson K. A., Fisher J. D., Delaney S. M., Rosenblum M. L., Olivi A., Judy K., Tatter S. B., Dolan M. E. Phase I trial of polifeprosan 20 with carmustine implant plus continuous infusion of intravenous O6-benzylguanine in adults with recurrent malignant glioma: new approaches to brain tumor therapy CNS consortium trial J. Clin. Oncol 2007 25, N 4:399–404.
[43] Koch D., Hundsberger T., Boor S., Kaina B. Local intracerebral administration of O6-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma J. Neurooncol 2007 82, N 1:85–89.
[44] Milsom M. D., Williams D. A. Live and let die: in vivo selection of gene-modified hematopoietic stem cells via MGMT-mediated chemoprotection DNA Repair (Amst). 2007 6, N 8 P. 1210–1221.
[45] Schambach A., Baum C. Vector design for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells DNA Repair (Amst) 2007 6, N 8:1187–1196.
[46] Davis B. M., Reese J. S., Koc O. N., Lee K., Schupp J. E., Gerson S. L. Selection for G156A O6-methylguanine DNA methyltransferase gene-transduced hematopoietic progenitors and protection from lethality in mice treated with O6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea Cancer Res 1997 57, N 22:5093–5099.
[47] Reese J. S., Davis B. M., Liu L., Gerson S. L. Simultaneous protection of G156A methylguanine DNA methyltransferase genetransduced hematopoietic progenitors and sensitization of tumor cells using O6-benzylguanine and temozolomide Clin. Cancer Res 1999 5, N 1:163–169.
[48] Davis B. M., Reese J. S., Lingas K., Gerson S. L. Drug selection of mutant methylguanine methyltransferase from different oncoretroviral backbones results in multilineage hematopoietic transgene expression in primary and secondary recipients J. Hematother. Stem Cell Res 2003 12, N 4:375–387.
[49] Bowman J. E., Reese J. S., Lingas K. T., Gerson S. L. Myeloablation is not required to select and maintain expression of the drug-resistance gene, mutant MGMT, in primary and secondary recipients Mol. Ther 2003 8, N 1:42–50.
[50] Kramer B. A., Lemckert F. A., Alexander I. E., Gunning P. W., McCowage G. B. Characterisation of a P140K mutant O6-methylguanine-DNA-methyltransferase (MGMT)-expressing transgenic mouse line with drug-selectable bone marrow J. Gene Med 2006 8, N 9:1071–1085.
[51] Cai S., Hatwell J. R., Cooper R. J., Juliar B. E., Kreklau E., Abonour R., Goebel W. S., Pollok K. E. In vivo effects of myeloablative alkylator therapy on survival and differentiation of MGMTP140K-transduced human G-CSF-mobilized peripheral blood cells Mol. Ther 2006 13, N 5:1016–1026.
[52] Southgate T. D., Garside E., Margison G. P., Fairbairn L. J. Dual agent chemoprotection by retroviral co-expression of either MDR1 or MRP1 with the P140K mutant of O6-methylguanineDNA-methyl transferase J. Gene Med 2006 8, N 8 :972–979.
[53] Maier P., Spier I., Laufs S., Veldwijk M. R., Fruehauf S., Wenz F., Zeller W. J. Chemoprotection of human hematopoietic stem cells by simultaneous lentiviral overexpression of multidrug resistance 1 and O6-methylguanine-DNA methyltransferase (P140K) Gene Ther 2010 17, N 3:389–399.
[54] Schambach A., Bohne J., Chandra S., Will E., Margison G.P., Williams D. A., Baum C. Equal potency of gammaretroviral and lentiviral SIN vectors for expression of O6-methylguanine-DNA methyltransferase in hematopoietic cells Mol. Ther 2006 13, N 2:391–400.
[55] Zielske S. P., Lingas K. T., Li Y., Gerson S. L. Limited lentiviral transgene expression with increasing copy number in an MGMT selection model: lack of copy number selection by drug treatment Mol. Ther 2004 9, N 6:923–931.
[56] Cai S., Ernstberger A., Wang H., Bailey B. J., Hartwell J. R., Sinn A. L., Eckermann O., Linka Y., Goebel W. S., Hanenberg H., Pollok K. E. In vivo selection of hematopoietic stem cells transduced at a low multiplicity-of-infection with a foamy viral MGMT (P140K) vector Exp. Hematol 2008 36, N 3 P. 283–292.
[57] Milsom M. D., Jerabek-Willemsen M., Harris C. E., Schambach A., Broun E., Bailey J., Jansen M., Schleimer D., Nattamai K., Wilhelm J., Watson A., Geiger H., Margison G. P., Moritz T., Baum C., Thomale J., Williams D. A. Reciprocal relationship between O6-methylguanine-DNA methyltransferase P140K expression level and chemoprotection of hematopoietic stem cells Cancer Res 2008 68, N 15:6171–6180.
[58] Kiem H. P., Wu R. A., Sun G., von Laer D., Rossi J. J., Trobridge G. D. Foamy combinatorial anti-HIV vectors with MGMTP140K potently inhibit HIV-1 and SHIV replication and mediate selection in vivo Gene Ther 2010 17, N 1:37–49