Biopolym. Cell. 2012; 28(1):56-61.
The influence of GSTP1 A313G polymorphism on susceptibility, chemotherapy-related toxicity and prognosis of Hodgkin’s lymphoma in Ukrainian patients
1Kriachok I. A., 1Khranovska N. M., 1Svergun N. M., 1Filonenko K. S., 1Novosad O. I., 1Titorenko I. B., 1Martynchik A. V., 1Gubareva H. O., 1Kadnikova T. V., 1Aleksik O. M., 1Kushchevyy E. V., 1Pastushenko I. V.
  1. National Cancer Institute
    33/43, Lomonosova Str., Kyiv, Ukraine, 03022


The aim of this research was to study the influence of GSTP1 A313G polymorphism on susceptibility, chemotherapy-related toxicity and prognosis of Hodgkin’s lymphoma in Ukrainian patients. Methods. The polymorphic variants of GSTP1 gene were analyzed using Allelic Discrimination Real-Time PCR. Results. The GSTP1 polymorphism is not directly involved in the development of Hodgkin’s lymphoma and chemotherapy-related toxicity, but homozygous wild genotype of this gene is associated with a worse clinical response to the therapy and a higher risk of relapse. Conclusions. The investigation of GSTP1 polymorphism is very promising, since it might provide a possible application of this genetic marker as an independent prognostic factor of Hodgkin’s lymphoma.
Keywords: Hodgkin’s lymphoma, polymorphism, GSTP1 gene


[1] Roman E., Smith A. G. Epidemiology of lymphomas. Histopathology 2011 58, N 1:4–14.
[2] Nakatsuka S., Aozasa K. Epidemiology and pathologic features of Hodgkin lymphoma. Int. J. Hematol 2006 83, N 5:391–397.
[3] Fedorenko Z. P., Gajsenko A. V., Goulak L. O., Gorokh Ye. L., Ryzhov A. Yu., Soumkina O. V., Koutsenko L. B., Romanov D. V., Pushkar L. O. Cancer in Ukraine 2008–2009. Bulletin of National Cancer Registry of Ukraine / Ed. I. B. Shchepotin Kyiv, 2010 N 11:68–72.
[4] Richardson S. E., McNamara C. The management of classical Hodgkin’s Lymphoma: past, present, and future. Adv. Hematol 2011 2011, ID 865870:1–17.
[5] Relling M. V., Dervieux T. Pharmacogenetics and cancer therapy. Nat. Rev. Cancer 2001 1, N 2:99–108.
[6] Ribrag V., Koscielny S., Casasnovas O., Cazeneuve C., Brice P., Morschhauser F., Gabarre J., Stamatoullas A., Lenoir G., Salles G. Pharmacogenetic study in Hodgkin lymphomas reveals the impact of UGT1A1 polymorphisms on patient prognosis. Blood 2009 113, N 14:3307–3313.
[7] Hayes J. D., Flanagan J. U., Jowsey I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol 2005 45:51–88.
[8] Watson M. A., Stewart R. K., Smith G. B, Massey T. E., Bell D. A. Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 1998 19, N 2:275–280.
[9] McIlwain C. C., Townsend D. M., Tew K. D. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 2006 25, N 11:1639–1648.
[10] Harries L. W., Stubbins M. J., Forman D., Howard G. C., Wolf C. R. Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 1997 18, N 4:641–644.
[11] Landi S., Norppa H., Frenzilli G., Cipollini G., Ponzanelli I., Barale R., Hirvonen A. Individual sensitivity to cytogenetic effects of 1,2:3,4-diepoxybutane in cultured human lymphocytes: influence of glutathione S-transferase M1, P1 and T1 genotypes. Pharmacogenetics 1998 8, N 6:461–471.
[12] Holley S. L., Fryer A. A., Haycock J. W., Grubb S. E., Strange R. C., Hoban P. R. Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis. Carcinogenesis 2007 28, N 11:2268–2273.
[13] Dasgupta R. K., Adamson P. J., Davies F. E., Rollinson S., Roddam P. L., Ashcroft A. J., Dring A. M., Fenton J. A., Child J. A., Allan J. M., Morgan G. J. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood 2003 102, N 7:2345–2350.
[14] Sweeney C., McClure G. Y., Fares M. Y., Stone A., Coles B. F., Thompson P. A., Korourian S., Hutchins L. F., Kadlubar F. F., Ambrosone C. B. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res 2000 60, N 20:5621–5624.
[15] Stoehlmacher J., Park D. J., Zhang W., Groshen S., Tsao-Wei D. D., Yu M. C., Lenz H. J. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J. Natl Cancer Inst 2002 94, N 12:936–942.
[16] Hohaus S., Massini G., D’Alo’ F., Guidi F., Putzulu R., Scardocci A., Rabi A., Di Febo A. L., Voso M. T., Leone G. Association between glutathione S-transferase genotypes and Hodgkin’s lymphoma risk and prognosis. Clin. Cancer Res 2003 9, N 9:3435–3440.
[17] Hohaus S., Di Ruscio A., Di Febo A., Massini G., D’Alo’ F., Guidi F., Mansueto G., Voso M. T., Leone G. Glutathione S-transferase P1 genotype and prognosis in Hodgkin’s lymphoma. Clin. Cancer Res 2005 11, N 6:2175–2179.
[18] Han X., Zheng T., Foss F. M., Lan Q., Holford T. R., Rothman N., Ma S., Zhang Y. Genetic polymorphisms in the metabolic pathway and non-Hodgkin lymphoma survival. Am. J. Hematol 2010 85, N 1:51–56.
[19] Sarmanova J., Benesova K., Gut I., Nedelcheva-Kristensen V., Tynkova L., Soucek P. Genetic polymorphisms of biotransformation enzymes in patients with Hodgkin’s and non-Hodgkin’s lymphomas. Hum. Mol. Gen 2001 10, N 12:1265–1273